Subscribe to RSS
DOI: 10.1055/s-0043-1775400
1,5-Diaza-3,7-diphosphacyclooctanes (P2N2): An Underappreciated Ligand Class for Nickel- and Palladium-Catalyzed Heck-Type Cross-Couplings
Financial support for this work was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC; RGPIN-2020-05065) and the Canada Research Chair program (950-232650).

Abstract
1,5-Diaza-3,7-diphosphacyclooctane (P2N2) scaffolds represent a readily accessible, tunable ligand class for transition metals. However, despite their prevalence in areas such as electrocatalysis and coordination chemistry, P2N2 ligands have been rarely used to make catalysts for organic synthesis. Research into Mizoroki–Heck-type aldehyde, alcohol, and alkene arylation reactions has revealed that the P2N2 family outperforms many commonly used phosphines. This Synpacts article summarizes our work and provides a broad overview on the preparation and application of P2N2 ligands in organic synthesis. It also serves to highlight how a simple, modular class of ligands can solve contemporary challenges with transition-metal catalysis, including novel reactivity and exceptional regioselectivity.
Key words
transition-metal catalysis - Mizoroki–Heck coupling - ligand design - regioselectivity - reductive cross-couplingPublication History
Received: 22 July 2024
Accepted: 12 August 2024
Article published online:
25 September 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Märkl VG, Jin GY, Schoerner C. Tetrahedron Lett. 1980; 21: 1409
- 2 Galan BR, Schöffel J, Linehan JC, Seu C, Appel AM, Roberts JA. S, Helm ML, Kilgore UJ, Yang JY, DuBois DL, Kubiak CP. J. Am. Chem. Soc. 2011; 133: 12767
- 3 Moiseev DV, James BR. Phosphorus, Sulfur Silicon Relat. Elem. 2022; 197: 327
- 4a Fraze K, Wilson AD, Appel AM, Rakowski DuBois M, DuBois DL. Organometallics 2007; 26: 3918
- 4b Kilgore UJ, Stewart MP, Helm ML, Dougherty WG, Kassel WS, Rakowski DuBois M, DuBois DL, Bullock RM. Inorg. Chem. 2011; 50: 10908
- 4c Brunner FM, Neville ML, Kubiak CP. Inorg. Chem. 2020; 59: 16872
- 4d Thomas GT, Isbrandt ES, Newman SG. Org. Synth. 2024; 101: 1
- 5a Egbert JD, Labios LA, Darmon JM, Piro NA, Kassel WS, Mock MT. Eur. J. Inorg. Chem. 2016; 1293
- 5b Mock MT, Chen S, Rousseau R, O’Hagan MJ, Dougherty WG, Kassel WS, DuBois DL, Bullock RM. Chem. Commun. 2011; 47: 12212
- 5c Welch KD, Dougherty WG, Kassel WS, Dubois DL, Bullock RM. Organometallics 2010; 29: 4532
- 5d Liu T, Chen S, O’Hagan MJ, Rakowski DuBois M, Bullock RM, DuBois DL. J. Am. Chem. Soc. 2012; 134: 6257
- 5e Wiedner ES, Yang JY, Dougherty WG, Kassel WS, Bullock RM, Rakowski DuBois M, DuBois DL. Organometallics 2010; 29: 5390
- 5f Appel AM, Pool DH, O’Hagan M, Shaw WJ, Yang JY, Rakowski DuBois M, DuBois DL, Bullock MR. ACS Catal. 2011; 1: 777
- 5g Strelnik ID, Dayanova IR, Krivolapov DB, Litvinov IA, Musina EI, Karasik AA, Sinyashin OG. Polyhedron 2018; 139: 1
- 5h Kane JC, Wong EH, Yap GP, Rheingold AL. Polyhedron 1999; 18: 1183
- 5i Stubbs JM, Chapple DE, Boyle PD, Blacquiere JM. ChemCatChem 2018; 10: 4001
- 5j Lilio AM, Reineke MH, Moore CE, Rheingold AL, Takase MK, Kubiak CP. J. Am. Chem. Soc. 2015; 137: 8251
- 5k Seu CS, Ung D, Doud MD, Moore CE, Rheingold AL, Kubiak CK. Organometallics 2013; 32: 4556
- 5l Musina EI, Khrizanforova VV, Strelnik ID, Valitov MI, Spiridonova YS, Krivolapov DB, Litvinov IA, Kadirov MK, Lönnecke P, Hey-Hawkins E, Budnikova YH, Karasik AA, Sinyashin OG. Chem. Eur. J. 2014; 20: 3169
- 5m Karasik AA, Naumov RN, Sinyashin OG, Belov GP, Novikova HV, Lönnecke P, Hey-Hawkins E. Dalton Trans. 2003; 2209
- 5n Spiridonova YS, Strelnik ID, Musina EI, Hey-Hawkins E, Litvinov IA, Karasik AA. Russ. J. Coord. Chem. (Engl. Transl.) 2020; 46: 477
- 6 Hulley EB, Helm ML, Bullock RM. Chem. Sci. 2014; 5: 4729
- 7 Chapple DE, Boyle PD, Blacquiere JM. ChemCatChem 2021; 13: 3789
- 8 Karasik AA, Musina EI, Strelnik ID, Dayanova IR, Elistratova JG, Mustafina AR, Sinyashin OG. Pure Appl. Chem. 2019; 91: 839
- 9a Wilson AD, Newell RH, McNevin MJ, Muckerman JT, Rakowski DuBois M, DuBois DL. J. Am. Chem. Soc. 2006; 128: 358
- 9b Yang JY, Bullock RM, Shaw WJ, Twamley B, Fraze K, Rakowski DuBois M, DuBois DL. J. Am. Chem. Soc. 2009; 131: 5935
- 10 Morra S. Front. Microbiol. 2022; 13: 853626
- 11 Wiedner ES, Appel AM, Raugei S, Shaw WJ, Bullock RM. Chem. Rev. 2022; 122: 12427
- 12 Galan BR, Reback ML, Jain A, Appel AM, Shaw WJ. Eur. J. Inorg. Chem. 2013; 5366
- 13 Roy S, Sharma B, Pecaut J, Simon P, Fontecave M, Tran PD, Derat E, Artero V. J. Am. Chem. Soc. 2017; 139: 3685
- 14 Yang JY, Bullock RM, Dougherty WG, Kassel WS, Twamley B, DuBois DL, Rakowski DuBois M. Dalton Trans. 2010; 39: 3001
- 15 Clevenger AL, Stolley RM, Aderibigbe J, Louie J. Chem. Rev. 2020; 120: 6124
- 16 Fihri A, Luart D, Len C, Solhy A, Chevrin C, Polshettiwar V. Dalton Trans. 2011; 40: 3116
- 17 Del Zotto A, Amoroso F, Baratta W, Rigo P. Eur. J. Org. Chem. 2009; 110
- 18 Karasik AA, Naumov RN, Balueva AS, Spiridonova YS, Golodkov ON, Novikova HV, Belov GP, Katsyuba SA, Vandyukova EE, Lönnecke P, Hey-Hawkins E, Sinyashin OG. Heteroat. Chem. 2006; 17: 499
- 19 Weiss CJ, Das P, Miller DL, Helm ML, Appel AM. ACS Catal. 2014; 4: 2951
- 20a Bow J.-PP, Boyle PD, Blacquiere JM. Eur. J. Inorg. Chem. 2015; 4162
- 20b Stubbs JM, Bow J.-PJ, Hazlehurst RJ, Blacquiere JM. Dalton Trans. 2016; 45: 17100
- 20c Stubbs JM, Bridge BJ, Blacquiere JM. Dalton Trans. 2019; 48: 7928
- 20d Bridge BJ, Boyle PD, Blacquiere JM. Organometallics 2020; 39: 2570
- 20e Chapple DE, Hoffer MA, Boyle PD, Blacquiere JM. Organometallics 2022; 41: 1532
- 21a Vandavasi JK, Hua X.-Y, Ben Halima H, Newman SG. Angew. Chem. Int. Ed. 2017; 56: 15441
- 21b Vandavasi JK, Newman SG. Synlett 2018; 29: 2081
- 22a Okude Y, Hirano S, Hiyama T, Nozaki H. J. Am. Chem. Soc. 1977; 99: 3179
- 22b Jin H, Uenishi J, Christ WJ, Kishi Y. J. Am. Chem. Soc. 1986; 108: 5644
- 22c Fürstner A. Chem. Rev. 1999; 99: 991
- 23a Majumdar KK, Cheng C.-H. Org. Lett. 2000; 2: 2295
- 23b Garcia KJ, Gilbert MM, Weix DJ. J. Am. Chem. Soc. 2019; 141: 1823
- 23c Ishida S, Suzuki H, Uchida S, Yamaguchi E, Itoh A. Eur. J. Org. Chem. 2019; 7483
- 24 Swyka RA, Zhang W, Richardson J, Ruble JC, Krische MJ. J. Am. Chem. Soc. 2019; 141: 1828
- 25 Isbrandt ES, Nasim A, Zhao K, Newman SG. J. Am. Chem. Soc. 2021; 143: 14646
- 26 Verheyen T, van Turnhout L, Vandavasi JK, Isbrandt ES, De Borggraeve WM, Newman SG. J. Am. Chem. Soc. 2019; 141: 6869
- 27a Twilton J, Christensen M, DiRocco DA, Ruck RT, Davies IW, MacMillan DW. C. Angew. Chem. Int. Ed. 2018; 57: 5369
- 27b Zhang S, Li L, Li J, Shi J, Xu K, Gao W, Zong L, Li G, Findlater M. Angew. Chem. Int. Ed. 2021; 60: 7275
- 28 MacQueen PM, Tassone JP, Diaz C, Stradiotto M. J. Am. Chem. Soc. 2018; 140: 5023
- 29 Nasim A, Thomas GT, Ovens JS, Newman SG. Org. Lett. 2022; 24: 7232
- 30a Heck RF. Org. React. (Hoboken, NJ U. S.) 1982; 27: 345
- 30b Davies GD. Jr, Hallberg A. Chem. Rev. 1989; 89: 1433
- 30c de Meijere A, Meyer FE. Angew. Chem. Int. Ed. 1995; 33: 2379
- 30d Beletskaya IP, Cheprakov AV. Chem. Rev. 2000; 100: 3009
- 30e The Mizoroki-Heck Reaction . Oestreich M., Wiley; Oxford: 2009
- 30f Bhakta S, Ghosh T. Adv. Synth. Catal. 2020; 362: 5257
- 31a Crisp GT. Chem. Soc. Rev. 1998; 27: 427
- 31b Lin B.-L, Liu L, Fu Y, Luo S.-W, Chen Q, Guo Q.-X. Organometallics 2004; 23: 2114
- 31c Surawatanawong P, Hall MB. Organometallics 2008; 27: 6222
- 31d Menezes da Silva VH, Braga AA. C, Cundari TR. Organometallics 2016; 35: 3170
- 31e Chernyshev VM, Ananikov VP. ACS Catal. 2022; 12: 1180
- 32a de Vries JG. Can. J. Chem. 2001; 79: 1086
- 32b Ree N, Göller AH, Jensen JH. ACS Omega 2022; 7: 45617
- 33 Mizoroki T, Mori K, Ozaki A. Bull. Chem. Soc. Jpn. 1971; 44: 581
- 34 Heck RF. Pure Appl. Chem. 1978; 50: 691
- 35a Cabri W, Candiani I, Bedeschi A. J. Org. Chem. 1992; 57: 3558
- 35b Cabri W, Candiani I, Bedeschi A, Santi R. J. Org. Chem. 1993; 58: 7421
- 36 Zou Y, Qin L, Ren X, Lu Y, Li Y, Zhou J. Chem. Eur. J. 2013; 19: 3504
- 37 For a single example of a linear selective Mizoroki–Heck coupling between an aryl triflate and a styrene, see: Zhou JS, Huang S, Teng S, Chi YR. Chem. Commun. 2021; 57: 3933
- 38a Cabri W, Candiani I. Acc. Chem. Res. 1995; 28: 2
- 38b Hyder Z, Ruan J, Xiao J. Chem. Eur. J. 2008; 14: 5555
- 38c Gøgsig WM, Kleimark J, Nilsonn Lill SO, Korsager S, Lindhardt AT, Norrby P.-O, Skrydstrup T. J. Am. Chem. Soc. 2012; 134: 443
- 38d Domzalska-Piecyzykolan A, Funes-Ardoiz I, Furman B, Bolm C. Angew. Chem. Int. Ed. 2021; 61: e202109801
- 39a Heck RF, Nolley JP. Jr. J. Org. Chem. 1972; 37: 2320
- 39b Ehle AR, Zhou Q, Watson MP. Org. Lett. 2012; 14: 1202
- 39c Yu L, Huang Y, Wei Z, Ding Y, Su C, Xu Q. J. Org. Chem. 2015; 80: 8677
- 40a Garnes-Portolés F, Greco R, Olivier-Meseguer J, Castellanos-Soriano J, Jiménez MC, López-Haro M, Hernández-Garrido JC, Boronat M, Pérez-Ruiz R, Levya-Pérez A. Nat. Catal. 2021; 4: 293
- 40b Lui K, Leifert D, Studer A. Nat. Synth. 2022; 1: 565
- 41a Werner EW, Sigman MS. J. Am. Chem. Soc. 2011; 133: 9692
- 41b Tasker SZ, Gutierrez AC, Jamison TF. Angew. Chem. Int. Ed. 2014; 53: 1858
- 42a Dieck HA, Heck RF. J. Am. Chem. Soc. 1974; 96: 1133
- 42b Kantchev EA. B, Peh G.-R, Zhang C, Ying JY. Org. Lett. 2008; 10: 3949
- 42c Islam MS, Nahra F, Tzouras NV, Barakat A, Cazin CS. J, Nolan SP, Al-Majid AM. Eur. J. Inorg. Chem. 2019; 4695
- 42d Wucher P, Caporaso L, Roesle P, Ragone F, Cavallo L, Mecking S, Göttker-Schnetmann I. Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 8955
- 43 Zhang W.-S, Ji D.-W, Li Y, Zhang X.-X, Mei Y.-K, Chen B.-Z, Chen Q.-A. Nat. Commun. 2023; 14: 651
- 44 Duhamel T, Scaringi S, Leforestier B, Poblader-Bahamonde AI, Mazet C. JACS Au 2023; 3: 261
- 45 Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
- 46a Isbrandt ES, Chapple DE, Tu NP. T, Dimakos V, Beardall AM. M, Boyle PD, Rowley C, Blacquiere JM, Newman SG. J. Am. Chem. Soc. 2024; 146: 5650
- 46b Chen Z, Isbrandt ES, Newman SG. Org. Lett. 2024; 26: 7723
- 47 For an overview of the Open Reaction Database (ORD), see: Kearnes SM, Maser MR, Wleklinski M, Kast A, Doyle AG, Dreher SD, Hawkins JM, Jensen KF, Coley CW. J. Am. Chem. Soc. 2021; 143: 18820
- 48 Bruno NC, Tudge MT, Buchwald SL. Chem. Sci. 2013; 4: 916
Vanadium:
Chromium:
Manganese:
Iron:
Cobalt:
Nickel:
Copper:
Molybdenum:
Ruthenium:
Rhodium:
Palladium:
Tungsten and Platinum:
Rhenium:
Gold:
For a general overview of the Mizoroki–Heck cross-coupling, see:
For discussions on the mechanisms of Ni- and Pd-catalyzed Mizoroki–Heck couplings, see:
For a representative selection of electron-rich alkenes in Mizoroki–Heck couplings, see:
For representative β-selective Mizoroki–Heck couplings with styrenes, see:
For representative α-selective Mizoroki–Heck couplings with styrenes, see:
For a representative β-selective Mizoroki–Heck coupling with terminal aliphatic alkenes, see:
For a representative α-selective Mizoroki–Heck coupling with terminal aliphatic alkenes, see:
For representative β-selective Mizoroki–Heck couplings with electron-deficient alkenes, see:
For representative α-selective Mizoroki–Heck couplings with electron-deficient alkenes, see: