RSS-Feed abonnieren
DOI: 10.1055/s-0043-1775409
Methanol for Hydrogenation and Methylation of Carbonyls: Advances and Challenges in Homogeneous Catalysis
The authors are grateful for funding from the University Grants Commission (UGC) and the Science and Engineering Research Board (SERB) (CRG/2021/002384).

Abstract
The catalytic dehydrogenation of methanol to give formaldehyde or formic acid, followed transfer hydrogenation and/or tandem (de)hydrogenation for the hydrogenation and C-methylation of carbonyls, offers advantages over traditional methods, including milder reaction conditions, improved safety, greater selectivity, and enhanced sustainability. This account provides a comprehensive overview of homogeneous catalysts reported for the transfer hydrogenation and C-methylation of various substrates, including ketones, chalcones, esters, and amides, using methanol as both a hydrogen donor and methylation source. We provide specific examples and mechanistic insights for each strategy, offering a thorough and concise overview of recent advancements from 2014 to 2024.
1 Introduction
2 Methanol Activation Strategies
3 Hydrogenation of Carbonyls
4 Methylation of Carbonyls
5 Outlook and Summary
Key words
methanol - hydrogenation - dehydrogenation - methylation - aldehyde - ketone - chalcone - carbonylPublikationsverlauf
Eingereicht: 06. August 2024
Angenommen nach Revision: 10. September 2024
Artikel online veröffentlicht:
18. Oktober 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Olah GA. Angew. Chem. Int. Ed. 2005; 44: 2636
- 2 Sehested J. J. Catal. 2019; 371: 368
- 3a Yadav V, Sivakumar G, Gupta V, Balaraman E. ACS Catal. 2021; 11: 14712
- 3b Kammen DM, Lipman TE. Science 2003; 302: 226
- 4 Kumar A, Daw P, Milstein D. Chem. Rev. 2022; 122: 385
- 5 Technology 20 2024 https://www.carbonrecycling.com/technology
- 6 Enerkem; (accessed Sep 20, 2024): https://enerkem.com
- 7 Cordero-Lanzac T, Ramirez A, Navajas A, Gevers L, Brunialti S, Gandía LM, Aguayo AT, Mani Sarathy S, Gascon J. J. Energy Chem. 2022; 68: 255
- 8 Keil FJ. Microporous Mesoporous Mater. 1999; 29: 49
- 9 Fernandez, L. Production Capacity of Methanol Worldwide from 2018 to 2022 20. Sep. 2024 accessed https://www.statista.com/statistics/1065891/global-methanolproduction-capacity/.
- 10 Sivakumar G, Kumar R, Yadav V, Gupta V, Balaraman E. ACS Catal. 2023; 13: 15013
- 11a Zhang W, Song M, Yang Q, Dai Z, Zhang S, Xin F, Dong W, Ma J, Jiang M. Biotechnol. Biofuels 2018; 11: 260
- 11b Palo DR, Dagle RA, Holladay JD. Chem. Rev. 2007; 107: 3992
- 11c Garcia G, Arriola E, Chen W.-H, De Luna MD. Energy 2021; 217: 119384
- 12a Kabadwal LM, Bera S, Banerjee D. Org. Chem. Front. 2021; 8: 7077
- 12b Natte K, Neumann H, Beller M, Jagadeesh RV. Angew. Chem. Int. Ed. 2017; 56: 6384
- 13 Irrgang T, Kempe R. Chem. Rev. 2019; 119: 2524
- 14 Shen Y, Zhan Y, Li S, Ning F, Du Y, Huang Y, He T, Zhou X. Chem. Sci. 2017; 8: 7498
- 15 Garg N, Sarkar A, Sundararaju B. Coord. Chem. Rev. 2021; 433: 213728
- 16 Carr C, Riddick JA. Ind. Eng. Chem. 1951; 43: 692
- 17 Dobereiner GE, Crabtree RH. Chem. Rev. 2010; 110: 681
- 18a Reed-Berendt BG, Latham DE, Dambatta MB, Morrill LC. ACS Cent. Sci. 2021; 7: 570
- 18b Nallagangula M, Subaramanian M, Kumar R, Balaraman E. Chem. Commun. 2023; 59: 7847
- 19 Hakim Siddiki SM. A, Toyao T, Shimizu K.-i. Green Chem. 2018; 20: 2933
- 20 Maji M, Panja D, Borthakur I, Kundu S. Org. Chem. Front. 2021; 8: 2673
- 21a Nakamura A. Selectivity Control in Homogeneous Catalysis. In Fundamental Research in Homogeneous Catalysis, Vol. 3. Tsutsui M. Springer; Boston: 1979: 41–54
- 21b The Handbook of Homogeneous Hydrogenation . de Vries JG, Elsevier CJ. Wiley-VCH; Weinheim: 2008
- 22a Filonenko GA, van Putten R, Hensen EJ. M, Pidko EA. Chem. Soc. Rev. 2018; 47: 1459
- 22b Mukherjee A, Milstein D. ACS Catal. 2018; 8: 11435
- 22c Lig L, Fritz M, Schneider S. Chem. Rev. 2019; 119: 2681
- 23a Crabtree RH. The Organometallic Chemistry of the Transition Metals, 5th ed. John Wiley & Sons; Hoboken: 2009: 224
- 23b Kubas GJ. J. Organomet. Chem. 2014; 751: 33
- 23c Crabtree RH. Chem. Rev. 2016; 116: 8750
- 26 Wodrich MD, Hu X. Nat. Rev. Chem. 2017; 2: 0099
- 27 Elsby MR, Baker RT. Chem. Soc. Rev. 2020; 49: 8933
- 28 Khusnutdinova JR, Milstein D. Angew. Chem. Int. Ed. 2015; 54: 12236
- 29 Wang D, Astruc D. Chem. Rev. 2015; 115: 6621
- 30 Verley A. Bull. Soc. Chim. Fr. 1925; 37: 537
- 31 Meerwein H, Schmidt R. Liebigs Ann. Chem. 1925; 444: 221
- 32a Brieger G, Nestrick TJ. Chem. Rev. 1974; 74: 567
- 32b Gladiali S, Alberico E. Chem. Soc. Rev. 2006; 35: 226
- 32c Sharma D, Choudhary P, Mittal P, Kumar S, Gouda A, Krishnan V. ACS Catal. 2024; 14: 4211
- 33 Johnstone RA. W, Wilby AH, Entwistle ID. Chem. Rev. 1985; 85: 129
- 34 Magano J, Dunetz JR. Org. Process Res. Dev. 2012; 16: 1156
- 35 Yoon NM. Pure Appl. Chem. 1996; 68: 843
- 36 Nie R, Peng X, Zhang H, Yu X, Lu X, Zhou D, Xia Q. Catal. Sci. Technol. 2017; 7: 627
- 37 Baráth E. Catalysts 2018; 8: 671
- 38 Pratihar S. Org. Biomol. Chem. 2014; 12: 5781
- 39 Cabrero-Antonino JR, Adam R, Papa V, Beller M. Nat. Commun. 2020; 11: 3893
- 40 Garg N, Sarkar A, Sundararaju B. Coord. Chem. Rev. 2021; 433: 213728
- 41 Crabtree RH. Chem. Rev. 2017; 117: 9228
- 42 Qie X, Khan R, Fan B. Curr. Org.Chem. 2022; 26: 1350
- 43 Weingart P, Thiel WR. ChemCatChem 2018; 10: 4844
- 44 Qian M, Liauw M, Emig G. Appl. Catal., A 2003; 238: 211
- 45 Lin W.-H, Chang H.-F. Catal. Today 2004; 97: 181
- 46 Quiroz Torres J, Royer S, Bellat JP, Giraudon JM, Lamonier JF. ChemSusChem 2013; 6: 578
- 47 Campos J, Sharninghausen LS, Manas MG, Crabtree RH. Inorg. Chem. 2015; 54: 5079
- 48 Aboo AH, Bennett EL, Deeprose M, Robertson CM, Iggo JA, Xiao J. Chem. Commun. 2018; 54: 11805
- 49 Chen Z, Chen G, Aboo AH, Iggo J, Xiao J. Asian J. Org. Chem. 2020; 9: 1174
- 50 Wang R, Han X, Xu J, Liu P, Li F. J. Org. Chem. 2020; 85: 2242
- 51 Garg N, Paira S, Sundararaju B. ChemCatChem 2020; 12: 3472
- 52 Ghosh R, Jana NC, Panda S, Bagh B. ACS Sustainable Chem. Eng. 2021; 9: 4903
- 53 Subaramanian M, Sivakumar G, Landge VG, Kumar R, Natte K, Jagadeesh RV, Balaraman E. J. Catal. 2023; 425: 386
- 54 Mandal A, Ganguli K, Pradhan M, Gorai A, Kundu S. ChemSusChem 2023; 16: e202300683
- 55 Ganguli K, Mandal A, Pradhan M, Deval AK, Kundu S. ACS Catal. 2023; 13: 7637
- 56 Patil RD, Pratihar S. ACS Sustainable Chem. Eng. 2024; 12: 6206
- 57 Schonherr H, Cernak T. Angew. Chem. Int. Ed. 2013; 52: 12256 ; Angew. Chem., 2013, 125, 12480
- 58 Yan G, Borah AJ, Wang L, Yang M. Adv. Synth. Catal. 2015; 357: 1333
- 59a Barreiro EJ, Kümmerle AE, Fraga CA. M. Chem. Rev. 2011; 111: 5215
- 59b Aynetdinova D, Callens MC, Hicks HB, Poh CY. X, Shennan BD. A, Boyd AM, Lim ZH, Leitch JA, Dixon DJ. Chem. Soc. Rev. 2021; 50: 5517
- 59c Cernak T, Dykstra KD, Tyagarajan S, Vachal P, Krska SW. Chem. Soc. Rev. 2016; 45: 546
- 60 Feng K, Quevedo RE, Kohrt JT, Oderinde MS, Reilly U, White MC. Nature 2020; 580: 621
- 61 Friis SD, Johansson MJ, Ackermann L. Nat. Chem. 2020; 12: 511
- 63a Templ J, Schnurch M. J. Org. Chem. 2022; 87: 4305
- 63b Gholipour F, Rahmani M, Panahi F. Green Process. Synth. 2019; 8: 584
- 63c Cheng H.-G, Pu M, Kundu G, Schoenebeck F. Org. Lett. 2020; 22: 331
- 64 Ogawa S, Obora Y. Chem. Commun. 2014; 50: 2491
- 65 Chan LK. M, Poole DL, Shen D, Healy MP, Donohoe TJ. Angew. Chem. Int. Ed. 2014; 53: 761
- 66 Quan X, Kerdphon S, Andersson PG. Chem. Eur. J. 2015; 21: 3576
- 67 Dang TT, Seayad AM. Adv. Synth. Catal. 2016; 358: 3373
- 68 Chakrabarti K, Maji M, Panja D, Paul B, Shee S, Das GK, Kundu S. Org. Lett. 2017; 19: 4750
- 69 Liu Z, Yang Z, Yu X, Zhang H, Yu B, Zhao Y, Liu Z. Org. Lett. 2017; 19: 5228
- 70 Deng D, Hu B, Yang M, Chen D. Organometallics 2018; 37: 3353
- 71 Mamidala R, Biswal P, Subramani MS, Samser S, Venkatasubbaiah K. J. Org. Chem. 2019; 84: 10472
- 72 Bruneau-Voisine A, Pallova L, Bastin S, César V, Sortais J.-B. Chem. Commun. 2019; 55: 314
- 73 Sklyaruk J, Borghs JC, El-Sepelgy O, Rueping M. Angew. Chem. Int. Ed. 2019; 58: 775
- 74 Bettoni L, Seck C, Mbaye MD, Gaillard S, Renaud J.-L. Org. Lett. 2019; 21: 3057
- 75 Latham DE, Polidano K, Williams JM. J, Morrill LC. Org. Lett. 2019; 21: 7914
- 76 Schlagbauer M, Kallmeier F, Irrgang T, Kempe R. Angew. Chem. Int. Ed. 2020; 59: 1485
- 77 Shee S, Kundu S. J. Org. Chem. 2021; 86: 6943
- 78 Emayavaramban B, Chakraborty P, Dahiya P, Sundararaju B. Org. Lett. 2022; 24: 6219
- 79 Song A, Liu S, Wang M, Lu Y, Wang R, Xing L.-B. J. Catal. 2022; 407: 90
- 80 Sau A, Panja D, Dey S, Kundu R, Kundu S. J. Catal. 2022; 414: 225
- 81 Ganguli K, Mandal A, Kundu S. ACS Catal. 2022; 12: 12444
- 82 Patil RD, Pratihar S. J. Org. Chem. 2024; 89: 1361
- 83 Thenarukandiyil R, Kamte R, Garhwal S, Effnert P, Fridman N, de Ruiter G. Organometallics 2023; 42: 62