Semin Neurol 2023; 43(05): 768-775
DOI: 10.1055/s-0043-1775751
Review Article

Disease-Based Prognostication: Neuro-Oncology

Kristin A. Waite*
1   Division of Cancer Epidemiology and Genetics, Trans-Divisional Research Program, National Cancer Institute, Bethesda, Maryland
2   Central Brain Tumor Registry of the United States (CBTRUS), Hinsdale, Illinois
,
Gino Cioffi*
1   Division of Cancer Epidemiology and Genetics, Trans-Divisional Research Program, National Cancer Institute, Bethesda, Maryland
2   Central Brain Tumor Registry of the United States (CBTRUS), Hinsdale, Illinois
,
Mark G. Malkin**
3   Cleveland Clinic, Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland, Ohio
,
Jill S. Barnholtz-Sloan**
1   Division of Cancer Epidemiology and Genetics, Trans-Divisional Research Program, National Cancer Institute, Bethesda, Maryland
2   Central Brain Tumor Registry of the United States (CBTRUS), Hinsdale, Illinois
4   Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland
› Author Affiliations

Abstract

Primary malignant and non-malignant brain and other central nervous system (CNS) tumors, while relatively rare, are a disproportionate source of morbidity and mortality. Here we provide a brief overview of approaches to modeling important clinical outcomes, such as overall survival, that are critical for clinical care. Because there are a large number of histologically distinct types of primary malignant and non-malignant brain and other CNS tumors, this chapter will provide an overview of prognostication considerations on the most common primary non-malignant brain tumor, meningioma, and the most common primary malignant brain tumor, glioblastoma. In addition, information on nomograms and how they can be used as individualized prognostication tools by clinicians to counsel patients and their families regarding treatment, follow-up, and prognosis is described. The current state of nomograms for meningiomas and glioblastomas are also provided.

* These authors share first authorship.


** These authors jointly supervised this work and share senior authorship.




Publication History

Article published online:
26 September 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Ostrom QT, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014-2018. Neuro-oncol 2021; 23 (12, suppl 2): iii1-iii105
  • 2 Rich JT, Neely JG, Paniello RC, Voelker CC, Nussenbaum B, Wang EW. A practical guide to understanding Kaplan-Meier curves. Otolaryngol Head Neck Surg 2010; 143 (03) 331-336
  • 3 In J, Lee DK. Survival analysis: part II - applied clinical data analysis. Korean J Anesthesiol 2019; 72 (05) 441-457
  • 4 Islim AI, Mohan M, Moon RDC. et al. Incidental intracranial meningiomas: a systematic review and meta-analysis of prognostic factors and outcomes. J Neurooncol 2019; 142 (02) 211-221
  • 5 Larjavaara S, Haapasalo H, Sankila R, Helén P, Auvinen A. Is the incidence of meningiomas underestimated? A regional survey. Br J Cancer 2008; 99 (01) 182-184
  • 6 Li XR, Kruchko C, Wu XC. et al. Are benign and borderline brain tumors underreported?. J Registry Manag 2016; 43 (04) 187-194
  • 7 Louis DN, Perry A, Wesseling P. et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro-oncol 2021; 23 (08) 1231-1251
  • 8 Zamanipoor Najafabadi AH, van der Meer PB, Boele FW. et al; Dutch Meningioma Consortium. Determinants and predictors for the long-term disease burden of intracranial meningioma patients. J Neurooncol 2021; 151 (02) 201-210
  • 9 Gondar R, Patet G, Schaller K, Meling TR. Meningiomas and cognitive impairment after treatment: a systematic and narrative review. Cancers (Basel) 2021; 13 (08) 1846
  • 10 Rogers L, Barani I, Chamberlain M. et al. Meningiomas: knowledge base, treatment outcomes, and uncertainties. A RANO review. J Neurosurg 2015; 122 (01) 4-23
  • 11 Biczok A, Karschnia P, Vitalini R. et al. Past medical history of tumors other than meningioma is a negative prognostic factor for tumor recurrence in meningiomas WHO grade I. Acta Neurochir (Wien) 2021; 163 (10) 2853-2859
  • 12 Spille DC, Adeli A, Sporns PB. et al. Predicting the risk of postoperative recurrence and high-grade histology in patients with intracranial meningiomas using routine preoperative MRI. Neurosurg Rev 2021; 44 (02) 1109-1117
  • 13 Behling F, Hempel JM, Schittenhelm J. Brain invasion in meningioma-a prognostic potential worth exploring. Cancers (Basel) 2021; 13 (13) 3259
  • 14 Chotai S, Schwartz TH. The Simpson grading: is it still valid?. Cancers (Basel) 2022; 14 (08) 2007
  • 15 Liu N, Song SY, Jiang JB, Wang TJ, Yan CX. The prognostic role of Ki-67/MIB-1 in meningioma: a systematic review with meta-analysis. Medicine (Baltimore) 2020; 99 (09) e18644
  • 16 Kwon SM, Kim JH, Kim YH. et al. Clinical implications of the Mitotic Index as a predictive factor for malignant transformation of atypical meningiomas. J Korean Neurosurg Soc 2022; 65 (02) 297-306
  • 17 Gritsch S, Batchelor TT, Gonzalez Castro LN. Diagnostic, therapeutic, and prognostic implications of the 2021 World Health Organization classification of tumors of the central nervous system. Cancer 2022; 128 (01) 47-58
  • 18 Mirian C, Duun-Henriksen AK, Juratli T. et al. Poor prognosis associated with TERT gene alterations in meningioma is independent of the WHO classification: an individual patient data meta-analysis. J Neurol Neurosurg Psychiatry 2020; 91 (04) 378-387
  • 19 Li H, Huang H, Zhang X. et al. Postoperative long-term independence among the elderly with meningiomas: function evolution, determinant identification, and prediction model development. Front Oncol 2021; 11: 639259
  • 20 Zhang GJ, Liu XY, You C. Clinical factors and outcomes of atypical meningioma: a population-based study. Front Oncol 2021; 11: 676683
  • 21 Zhang J, Zhang G, Cao Y. et al. A magnetic resonance imaging-based radiomic model for the noninvasive preoperative differentiation between transitional and atypical meningiomas. Front Oncol 2022; 12: 811767
  • 22 Li N, Mo Y, Huang C. et al. A clinical semantic and radiomics nomogram for predicting brain invasion in WHO grade II meningioma based on tumor and tumor-to-brain interface features. Front Oncol 2021; 11: 752158
  • 23 Peng S, Cheng Z, Guo Z. Diagnostic nomogram model for predicting preoperative pathological grade of meningioma. Transl Cancer Res 2021; 10 (09) 4057-4064
  • 24 Jia Z, Yan Y, Wang J. et al. Development and validation of prognostic nomogram in patients with WHO grade III meningioma: a retrospective cohort study based on SEER database. Front Oncol 2021; 11: 719974
  • 25 Lin Y, Dai P, Lin Q, Chen J. A predictive nomogram for atypical meningioma based on preoperative magnetic resonance imaging and routine blood tests. World Neurosurg 2022; 163: e610-e616
  • 26 Nassiri F, Mamatjan Y, Suppiah S. et al; International Consortium on Meningiomas. DNA methylation profiling to predict recurrence risk in meningioma: development and validation of a nomogram to optimize clinical management. Neuro-oncol 2019; 21 (07) 901-910
  • 27 Stupp R, Mason WP, van den Bent MJ. et al; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352 (10) 987-996
  • 28 Stupp R, Hegi ME, Mason WP. et al; European Organisation for Research and Treatment of Cancer Brain Tumour and Radiation Oncology Groups, National Cancer Institute of Canada Clinical Trials Group. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009; 10 (05) 459-466
  • 29 Sharma A, Graber JJ. Overview of prognostic factors in adult gliomas. Ann Palliat Med 2021; 10 (01) 863-874
  • 30 Chen K, Duan P, Jiang P. Prognostic value of preoperative seizure in adult glioblastoma: a systematic review and meta-analysis. Asian J Surg 2021; 44 (07) 994-995
  • 31 Parsons DW, Jones S, Zhang X. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321 (5897) 1807-1812
  • 32 Montemurro N, Perrini P, Rapone B. Clinical risk and overall survival in patients with diabetes mellitus, hyperglycemia and glioblastoma multiforme. a review of the current literature. Int J Environ Res Public Health 2020; 17 (22) 8501
  • 33 Revilla-Pacheco F, Rodríguez-Salgado P, Barrera-Ramírez M. et al. Extent of resection and survival in patients with glioblastoma multiforme: systematic review and meta-analysis. Medicine (Baltimore) 2021; 100 (25) e26432
  • 34 Bapuraj JR, Wang N, Srinivasan A, Rao A. Advanced imaging and computational techniques for the diagnostic and prognostic assessment of malignant gliomas. Cancer J 2021; 27 (05) 344-352
  • 35 Corr F, Grimm D, Saß B. et al. Radiogenomic predictors of recurrence in glioblastoma-a systematic review. J Pers Med 2022; 12 (03) 402
  • 36 Yu W, Zhang L, Wei Q, Shao A. O6-Methylguanine-DNA methyltransferase (MGMT): challenges and new opportunities in glioma chemotherapy. Front Oncol 2020; 9: 1547
  • 37 McAleenan A, Kelly C, Spiga F. et al. Prognostic value of test(s) for O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation for predicting overall survival in people with glioblastoma treated with temozolomide. Cochrane Database Syst Rev 2021; 3 (03) CD013316
  • 38 Zhou Y, Yang L, Zhang X. et al. Identification of potential biomarkers in glioblastoma through bioinformatic analysis and evaluating their prognostic value. BioMed Res Int 2019; 2019: 6581576
  • 39 Zhang LL, Zhang LF, Shi YB. miR-24 inhibited the killing effect of natural killer cells to colorectal cancer cells by downregulating Paxillin. Biomed Pharmacother 2018; 101: 257-263
  • 40 Hyduk SJ, Oh J, Xiao H, Chen M, Cybulsky MI. Paxillin selectively associates with constitutive and chemoattractant-induced high-affinity alpha4beta1 integrins: implications for integrin signaling. Blood 2004; 104 (09) 2818-2824
  • 41 Desiniotis A, Kyprianou N. Significance of talin in cancer progression and metastasis. Int Rev Cell Mol Biol 2011; 289: 117-147
  • 42 McCarthy MM, Wright CL, Schwarz JM. New tricks by an old dogma: mechanisms of the Organizational/Activational Hypothesis of steroid-mediated sexual differentiation of brain and behavior. Horm Behav 2009; 55 (05) 655-665
  • 43 Huang Z, Wang H, Sun D, Liu J. Identification of Paxillin as a prognostic factor for glioblastoma via integrated bioinformatics analysis. BioMed Res Int 2022; 2022: 7171126
  • 44 Amer RG, Ezz El Arab LR, Abd El Ghany D, Saad AS, Bahie-Eldin N, Swellam M. Prognostic utility of lncRNAs (LINC00565 and LINC00641) as molecular markers in glioblastoma multiforme (GBM). J Neurooncol 2022; 158 (03) 435-444
  • 45 Barzegar Behrooz A, Syahir A, Ahmad S. CD133: beyond a cancer stem cell biomarker. J Drug Target 2019; 27 (03) 257-269
  • 46 Abdoli Shadbad M, Hosseinkhani N, Asadzadeh Z, Brunetti O, Silvestris N, Baradaran B. The prognostic value of CD133 in predicting the relapse and recurrence pattern of high-grade gliomas on MRI: a meta-analysis. Front Oncol 2021; 11: 722833
  • 47 Gorlia T, van den Bent MJ, Hegi ME. et al. Nomograms for predicting survival of patients with newly diagnosed glioblastoma: prognostic factor analysis of EORTC and NCIC trial 26981-22981/CE.3. Lancet Oncol 2008; 9 (01) 29-38
  • 48 Gittleman H, Lim D, Kattan MW. et al. An independently validated nomogram for individualized estimation of survival among patients with newly diagnosed glioblastoma: NRG Oncology RTOG 0525 and 0825. Neuro-oncol 2017; 19 (05) 669-677
  • 49 Gittleman H, Cioffi G, Chunduru P. et al. An independently validated nomogram for isocitrate dehydrogenase-wild-type glioblastoma patient survival. Neurooncol Adv 2019; 1 (01) vdz007
  • 50 Jin Y, Wang Z, Xiang K. et al. Comprehensive development and validation of gene signature for predicting survival in patients with glioblastoma. Front Genet 2022; 13: 900911
  • 51 Huang K, Rao C, Li Q. et al. Construction and validation of a glioblastoma prognostic model based on immune-related genes. Front Neurol 2022; 13: 902402
  • 52 Wang S, Xu X. An immune-related gene pairs signature for predicting survival in glioblastoma. Front Oncol 2021; 11: 564960
  • 53 Wang GM, Cioffi G, Patil N. et al. Importance of the intersection of age and sex to understand variation in incidence and survival for primary malignant gliomas. Neuro-oncol 2022; 24 (02) 302-310
  • 54 Gittleman H, Ostrom QT, Stetson LC. et al. Sex is an important prognostic factor for glioblastoma but not for nonglioblastoma. Neurooncol Pract 2019; 6 (06) 451-462
  • 55 Ostrom QT, Rubin JB, Lathia JD, Berens ME, Barnholtz-Sloan JS. Females have the survival advantage in glioblastoma. Neuro-oncol 2018; 20 (04) 576-577
  • 56 Patil N, Somasundaram E, Waite KA. et al. Independently validated sex-specific nomograms for predicting survival in patients with newly diagnosed glioblastoma: NRG Oncology RTOG 0525 and 0825. J Neurooncol 2021; 155 (03) 363-372
  • 57 Tewarie IA, Senders JT, Kremer S. et al. Survival prediction of glioblastoma patients-are we there yet? A systematic review of prognostic modeling for glioblastoma and its clinical potential. Neurosurg Rev 2021; 44 (04) 2047-2057