Semin Neurol 2023; 43(06): 867-888
DOI: 10.1055/s-0043-1776765
Review Article

Brain Tumor Imaging: Review of Conventional and Advanced Techniques

Andrew Campion
1   Department of Radiology (Neuroradiology), Stanford University, Stanford, California
,
Michael Iv
1   Department of Radiology (Neuroradiology), Stanford University, Stanford, California
› Author Affiliations
Funding None.

Abstract

Approaches to central nervous system (CNS) tumor classification and evaluation have undergone multiple iterations over the past few decades, in large part due to our growing understanding of the influence of genetics on tumor behavior and our refinement of brain tumor imaging techniques. Computed tomography and magnetic resonance imaging (MRI) both play a critical role in the diagnosis and monitoring of brain tumors, although MRI has become especially important due to its superior soft tissue resolution. The purpose of this article will be to briefly review the fundamentals of conventional and advanced techniques used in brain tumor imaging. We will also highlight the applications of these imaging tools in the context of commonly encountered tumors based on the most recently updated 2021 World Health Organization (WHO) classification of CNS tumors framework.



Publication History

Article published online:
14 November 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Louis DN, Ohgaki H, Wiestler OD. et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007; 114 (02) 97-109
  • 2 Johnson DR, Giannini C, Vaubel RA. et al. A radiologist's guide to the 2021 who central nervous system tumor classification: part i—key concepts and the spectrum of diffuse gliomas. Radiology 2022; 304 (03) 494-508
  • 3 Louis DN, Perry A, Reifenberger G. et al. The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 2016; 131 (06) 803-820
  • 4 Brat DJ, Verhaak RG, Aldape KD. et al; Cancer Genome Atlas Research Network. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 2015; 372 (26) 2481-2498
  • 5 Louis DN, Perry A, Wesseling P. et al. The 2021 who classification of tumors of the central nervous system: a summary. Neuro-oncol 2021; 23 (08) 1231-1251
  • 6 Gao H, Jiang X. Progress on the diagnosis and evaluation of brain tumors. Cancer Imaging 2013; 13 (04) 466-481
  • 7 Bénard F, Romsa J, Hustinx R. Imaging gliomas with positron emission tomography and single-photon emission computed tomography. Semin Nucl Med 2003; 33 (02) 148-162
  • 8 Mabray MC, Barajas Jr RF, Cha S. Modern brain tumor imaging. Brain Tumor Res Treat 2015; 3 (01) 8-23
  • 9 Li AY, Iv M. Conventional and advanced imaging techniques in post-treatment glioma imaging. Front Radiol 2022; 2: 883293
  • 10 Iv M, Yoon BC, Heit JJ, Fischbein N, Wintermark M. Current clinical state of advanced magnetic resonance imaging for brain tumor diagnosis and follow up. Semin Roentgenol 2018; 53 (01) 45-61
  • 11 Ellingson BM, Malkin MG, Rand SD. et al. Validation of functional diffusion maps (fDMs) as a biomarker for human glioma cellularity. J Magn Reson Imaging 2010; 31 (03) 538-548
  • 12 Sugahara T, Korogi Y, Kochi M. et al. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 1999; 9 (01) 53-60
  • 13 Guo AC, Cummings TJ, Dash RC, Provenzale JM. Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics. Radiology 2002; 224 (01) 177-183
  • 14 Al Sayyari A, Buckley R, McHenery C, Pannek K, Coulthard A, Rose S. Distinguishing recurrent primary brain tumor from radiation injury: a preliminary study using a susceptibility-weighted MR imaging-guided apparent diffusion coefficient analysis strategy. AJNR Am J Neuroradiol 2010; 31 (06) 1049-1054
  • 15 Lee WJ, Choi SH, Park CK. et al. Diffusion-weighted MR imaging for the differentiation of true progression from pseudoprogression following concomitant radiotherapy with temozolomide in patients with newly diagnosed high-grade gliomas. Acad Radiol 2012; 19 (11) 1353-1361
  • 16 Svolos P, Kousi E, Kapsalaki E. et al. The role of diffusion and perfusion weighted imaging in the differential diagnosis of cerebral tumors: a review and future perspectives. Cancer Imaging 2014; 14 (01) 20
  • 17 Lee SJ, Kim JH, Kim YM. et al. Perfusion MR imaging in gliomas: comparison with histologic tumor grade. Korean J Radiol 2001; 2 (01) 1-7
  • 18 Bisdas S, Kirkpatrick M, Giglio P, Welsh C, Spampinato MV, Rumboldt Z. Cerebral blood volume measurements by perfusion-weighted MR imaging in gliomas: ready for prime time in predicting short-term outcome and recurrent disease?. AJNR Am J Neuroradiol 2009; 30 (04) 681-688
  • 19 Danchaivijitr N, Waldman AD, Tozer DJ. et al. Low-grade gliomas: do changes in rCBV measurements at longitudinal perfusion-weighted MR imaging predict malignant transformation?. Radiology 2008; 247 (01) 170-178
  • 20 Shiroishi MS, Habibi M, Rajderkar D. et al. Perfusion and permeability MR imaging of gliomas. Technol Cancer Res Treat 2011; 10 (01) 59-71
  • 21 Hu LS, Baxter LC, Smith KA. et al. Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol 2009; 30 (03) 552-558
  • 22 Vidyasagar R, Abernethy L, Pizer B, Avula S, Parkes LM. Quantitative measurement of blood flow in paediatric brain tumours-a comparative study of dynamic susceptibility contrast and multi time-point arterial spin labelled MRI. Br J Radiol 2016; 89 (1062): 20150624
  • 23 White CM, Pope WB, Zaw T. et al. Regional and voxel-wise comparisons of blood flow measurements between dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) and arterial spin labeling (ASL) in brain tumors: regional and voxel-wise comparisons of blood flow measurements. J Neuroimaging 2014; 24 (01) 23-30
  • 24 Roberts HC, Roberts TPL, Bollen AW, Ley S, Brasch RC, Dillon WP. Correlation of microvascular permeability derived from dynamic contrast-enhanced MR imaging with histologic grade and tumor labeling index: a study in human brain tumors. Acad Radiol 2001; 8 (05) 384-391
  • 25 Roberts HC, Roberts TP, Brasch RC, Dillon WP. Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol 2000; 21 (05) 891-899
  • 26 Brandão LA, Castillo M. Adult brain tumors: clinical applications of magnetic resonance spectroscopy. Magn Reson Imaging Clin N Am 2016; 24 (04) 781-809
  • 27 Saraswathy S, Crawford FW, Lamborn KR. et al. Evaluation of MR markers that predict survival in patients with newly diagnosed GBM prior to adjuvant therapy. J Neurooncol 2009; 91 (01) 69-81
  • 28 Ishimaru H, Morikawa M, Iwanaga S, Kaminogo M, Ochi M, Hayashi K. Differentiation between high-grade glioma and metastatic brain tumor using single-voxel proton MR spectroscopy. Eur Radiol 2001; 11 (09) 1784-1791
  • 29 Verma A, Kumar I, Verma N, Aggarwal P, Ojha R. Magnetic resonance spectroscopy - revisiting the biochemical and molecular milieu of brain tumors. BBA Clin 2016; 5: 170-178
  • 30 Law M, Yang S, Wang H. et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 2003; 24 (10) 1989-1998
  • 31 Chuang MT, Liu YS, Tsai YS, Chen YC, Wang CK. Differentiating radiation-induced necrosis from recurrent brain tumor using MR perfusion and spectroscopy: a meta-analysis. PLoS ONE 2016; 11 (01) e0141438
  • 32 Eckel-Passow JE, Lachance DH, Molinaro AM. et al. Glioma groups based on 1p/19q, idh, and tert promoter mutations in tumors. N Engl J Med 2015; 372 (26) 2499-2508
  • 33 Osborn AG, Hedlund GL, Salzman KL. Osborn's Brain: Imaging, Pathology, and Anatomy. 2nd ed.. Elsevier; 2018
  • 34 Deguchi S, Oishi T, Mitsuya K. et al. Clinicopathological analysis of T2-FLAIR mismatch sign in lower-grade gliomas. Sci Rep 2020; 10 (01) 10113
  • 35 Broen MPG, Smits M, Wijnenga MMJ. et al. The T2-FLAIR mismatch sign as an imaging marker for non-enhancing IDH-mutant, 1p/19q-intact lower-grade glioma: a validation study. Neuro-oncol 2018; 20 (10) 1393-1399
  • 36 Park SI, Suh CH, Guenette JP, Huang RY, Kim HS. The T2-FLAIR mismatch sign as a predictor of IDH-mutant, 1p/19q-noncodeleted lower-grade gliomas: a systematic review and diagnostic meta-analysis. Eur Radiol 2021; 31 (07) 5289-5299
  • 37 Jain R, Johnson DR, Patel SH. et al. “Real world” use of a highly reliable imaging sign: “T2-FLAIR mismatch” for identification of IDH mutant astrocytomas. Neuro-oncol 2020; 22 (07) 936-943
  • 38 Le D, Trinh K, Das N, Kuo AH. T2-fluid attenuated inversion recovery mismatch in tumefactive multiple sclerosis. BJR Case Rep 2023; 9 (01) 20220138
  • 39 Smits M. Imaging of oligodendroglioma. Br J Radiol 2016; 89 (1060): 20150857
  • 40 Murakami R, Sugahara T, Nakamura H. et al. Malignant supratentorial astrocytoma treated with postoperative radiation therapy: prognostic value of pretreatment quantitative diffusion-weighted MR imaging. Radiology 2007; 243 (02) 493-499
  • 41 Zulfiqar M, Yousem DM, Lai H. ADC values and prognosis of malignant astrocytomas: does lower ADC predict a worse prognosis independent of grade of tumor?–a meta-analysis. AJR Am J Roentgenol 2013; 200 (03) 624-629
  • 42 Yang X, Xing Z, She D. et al. Grading of IDH-mutant astrocytoma using diffusion, susceptibility and perfusion-weighted imaging. BMC Med Imaging 2022; 22 (01) 105
  • 43 Hirai T, Murakami R, Nakamura H. et al. Prognostic value of perfusion MR imaging of high-grade astrocytomas: long-term follow-up study. AJNR Am J Neuroradiol 2008; 29 (08) 1505-1510
  • 44 Kessler AT, Bhatt AA. Brain tumour post-treatment imaging and treatment-related complications. Insights Imaging 2018; 9 (06) 1057-1075
  • 45 Young RJ, Gupta A, Shah AD. et al. Potential utility of conventional MRI signs in diagnosing pseudoprogression in glioblastoma. Neurology 2011; 76 (22) 1918-1924
  • 46 Reuter G, Moïse M, Roll W. et al. Conventional and advanced imaging throughout the cycle of care of gliomas. Neurosurg Rev 2021; 44 (05) 2493-2509
  • 47 Asao C, Korogi Y, Kitajima M. et al. Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. AJNR Am J Neuroradiol 2005; 26 (06) 1455-1460
  • 48 Gupta A, Young RJ, Karimi S. et al. Isolated diffusion restriction precedes the development of enhancing tumor in a subset of patients with glioblastoma. AJNR Am J Neuroradiol 2011; 32 (07) 1301-1306
  • 49 Iv M, Liu X, Lavezo J. et al. Perfusion MRI-based fractional tumor burden differentiates between tumor and treatment effect in recurrent glioblastomas and informs clinical decision-making. AJNR Am J Neuroradiol 2019; 40 (10) 1649-1657
  • 50 Gasparetto EL, Pawlak MA, Patel SH. et al. Posttreatment recurrence of malignant brain neoplasm: accuracy of relative cerebral blood volume fraction in discriminating low from high malignant histologic volume fraction. Radiology 2009; 250 (03) 887-896
  • 51 Horská A, Barker PB. Imaging of brain tumors: MR spectroscopy and metabolic imaging. Neuroimaging Clin N Am 2010; 20 (03) 293-310
  • 52 Weinberg BD, Kuruva M, Shim H, Mullins ME. Clinical applications of magnetic resonance spectroscopy in brain tumors. Radiol Clin North Am 2021; 59 (03) 349-362
  • 53 Koelsche C, Wöhrer A, Jeibmann A. et al. Mutant BRAF V600E protein in ganglioglioma is predominantly expressed by neuronal tumor cells. Acta Neuropathol 2013; 125 (06) 891-900
  • 54 Bale TA. FGFR- gene family alterations in low-grade neuroepithelial tumors. Acta Neuropathol Commun 2020; 8 (01) 21
  • 55 Vaz A, Cavalcanti MS, da Silva Junior EB, Ramina R, de Almeida Teixeira BC. Uncommon glioneuronal tumors: a radiologic and pathologic synopsis. AJNR Am J Neuroradiol 2022; 43 (08) 1080-1089
  • 56 Krauze AV. Glioneuronal tumors: insights into a rare tumor entity. In: Debinski W. eds. Gliomas. Winston Salem, NC. Exon Publications; 2021: 211-228
  • 57 Takahashi A, Hong SC, Seo DW, Hong SB, Lee M, Suh YL. Frequent association of cortical dysplasia in dysembryoplastic neuroepithelial tumor treated by epilepsy surgery. Surg Neurol 2005; 64 (05) 419-427
  • 58 Shin JH, Lee HK, Khang SK. et al. Neuronal tumors of the central nervous system: radiologic findings and pathologic correlation. Radiographics 2002; 22 (05) 1177-1189
  • 59 Klisch J, Juengling F, Spreer J. et al. Lhermitte-Duclos disease: assessment with MR imaging, positron emission tomography, single-photon emission CT, and MR spectroscopy. AJNR Am J Neuroradiol 2001; 22 (05) 824-830
  • 60 Nunes RH, Hsu CC, da Rocha AJ. et al. Multinodular and vacuolating neuronal tumor of the cerebrum: a new “leave me alone” lesion with a characteristic imaging pattern. AJNR Am J Neuroradiol 2017; 38 (10) 1899-1904
  • 61 Smith AB, Smirniotopoulos JG, Horkanyne-Szakaly I. From the radiologic pathology archives: intraventricular neoplasms: radiologic-pathologic correlation. Radiographics 2013; 33 (01) 21-43
  • 62 Tamrazi B, Shiroishi MS, Liu CSJ. Advanced imaging of intracranial meningiomas. Neurosurg Clin N Am 2016; 27 (02) 137-143
  • 63 Maas SLN, Stichel D, Hielscher T. et al; German Consortium on Aggressive Meningiomas (KAM). Integrated molecular-morphologic meningioma classification: a multicenter retrospective analysis, retrospectively and prospectively validated. J Clin Oncol 2021; 39 (34) 3839-3852
  • 64 Backer-Grøndahl T, Moen BH, Torp SH. The histopathological spectrum of human meningiomas. Int J Clin Exp Pathol 2012; 5 (03) 231-242
  • 65 Behling F, Hempel JM, Schittenhelm J. Brain invasion in meningioma—a prognostic potential worth exploring. Cancers (Basel) 2021; 13 (13) 3259
  • 66 Baumgarten P, Gessler F, Schittenhelm J. et al. Brain invasion in otherwise benign meningiomas does not predict tumor recurrence. Acta Neuropathol 2016; 132 (03) 479-481
  • 67 Takeguchi T, Miki H, Shimizu T. et al. Evaluation of the tumor-brain interface of intracranial meningiomas on MR imaging including FLAIR images. Magn Reson Med Sci 2003; 2 (04) 165-169
  • 68 Sotoudeh H, Yazdi HR. A review on dural tail sign. World J Radiol 2010; 2 (05) 188-192
  • 69 Spille DC, Sporns PB, Heß K, Stummer W, Brokinkel B. Prediction of high-grade histology and recurrence in meningiomas using routine preoperative magnetic resonance imaging: a systematic review. World Neurosurg 2019; 128: 174-181
  • 70 Bano S, Waraich MM, Khan MA, Buzdar SA, Manzur S. Diagnostic value of apparent diffusion coefficient for the accurate assessment and differentiation of intracranial meningiomas. Acta Radiol Short Rep 2013; 2 (07) 2047981613512484
  • 71 Filippi CG, Edgar MA, Uluğ AM, Prowda JC, Heier LA, Zimmerman RD. Appearance of meningiomas on diffusion-weighted images: correlating diffusion constants with histopathologic findings. AJNR Am J Neuroradiol 2001; 22 (01) 65-72
  • 72 Mayercik V, Ma M, Holdsworth S, Heit J, Iv M. Arterial spin-labeling MRI identifies hypervascular meningiomas. AJR Am J Roentgenol 2019; 213 (05) 1124-1128
  • 73 Kremer S, Grand S, Rémy C. et al. Contribution of dynamic contrast MR imaging to the differentiation between dural metastasis and meningioma. Neuroradiology 2004; 46 (08) 642-648
  • 74 Smith AB, Horkanyne-Szakaly I, Schroeder JW, Rushing EJ. From the radiologic pathology archives: mass lesions of the dura: beyond meningioma-radiologic-pathologic correlation. Radiographics 2014; 34 (02) 295-312
  • 75 Alaggio R, Amador C, Anagnostopoulos I. et al. The 5th edition of the world health organization classification of haematolymphoid tumours: lymphoid neoplasms. Leukemia 2022; 36 (07) 1720-1748
  • 76 Pons-Escoda A, Naval-Baudin P, Velasco R, Vidal N, Majós C. Imaging of lymphomas involving the CNS: an update-review of the full spectrum of disease with an emphasis on the world health organization classifications of CNS tumors 2021 and hematolymphoid tumors 2022. AJNR Am J Neuroradiol 2023; 44 (04) 358-366
  • 77 Haldorsen IS, Espeland A, Larsson EM. Central nervous system lymphoma: characteristic findings on traditional and advanced imaging. AJNR Am J Neuroradiol 2011; 32 (06) 984-992
  • 78 Sakata A, Okada T, Yamamoto A. et al. Primary central nervous system lymphoma: is absence of intratumoral hemorrhage a characteristic finding on MRI?. Radiol Oncol 2015; 49 (02) 128-134
  • 79 Mangla R, Kolar B, Zhu T, Zhong J, Almast J, Ekholm S. Percentage signal recovery derived from MR dynamic susceptibility contrast imaging is useful to differentiate common enhancing malignant lesions of the brain. AJNR Am J Neuroradiol 2011; 32 (06) 1004-1010
  • 80 Lee MD, Baird GL, Bell LC, Quarles CC, Boxerman JL. Utility of percentage signal recovery and baseline signal in DSC-MRI optimized for relative CBV measurement for differentiating glioblastoma, lymphoma, metastasis, and meningioma. AJNR Am J Neuroradiol 2019; 40 (09) 1445-1450
  • 81 Mahale P, Shiels MS, Lynch CF, Engels EA. Incidence and outcomes of primary central nervous system lymphoma in solid organ transplant recipients. Am J Transplant 2018; 18 (02) 453-461
  • 82 Kaulen LD, Karschnia P, Dietrich J, Baehring JM. Autoimmune disease-related primary CNS lymphoma: systematic review and meta-analysis. J Neurooncol 2020; 149 (01) 153-159
  • 83 Suh CH, Kim HS, Lee SS. et al. Atypical imaging features of primary central nervous system lymphoma that mimics glioblastoma: utility of intravoxel incoherent motion MR imaging. Radiology 2014; 272 (02) 504-513
  • 84 Chang L, Cornford ME, Chiang FL, Ernst TM, Sun NC, Miller BL. Radiologic-pathologic correlation. Cerebral toxoplasmosis and lymphoma in AIDS. AJNR Am J Neuroradiol 1995; 16 (08) 1653-1663
  • 85 Ernst TM, Chang L, Witt MD. et al. Cerebral toxoplasmosis and lymphoma in AIDS: perfusion MR imaging experience in 13 patients. Radiology 1998; 208 (03) 663-669
  • 86 Wang S, Kim S, Chawla S. et al. Differentiation between glioblastomas, solitary brain metastases, and primary cerebral lymphomas using diffusion tensor and dynamic susceptibility contrast-enhanced MR imaging. AJNR Am J Neuroradiol 2011; 32 (03) 507-514
  • 87 Bobillo S, Khwaja J, Ferreri AJM, Cwynarski K. Prevention and management of secondary central nervous system lymphoma. Haematologica 2023; 108 (03) 673-689
  • 88 Ferreri AJM, Doorduijn JK, Re A. et al; International Extranodal Lymphoma Study Group (IELSG). MATRix-RICE therapy and autologous haematopoietic stem-cell transplantation in diffuse large B-cell lymphoma with secondary CNS involvement (MARIETTA): an international, single-arm, phase 2 trial. Lancet Haematol 2021; 8 (02) e110-e121
  • 89 Fink KR, Fink JR. Imaging of brain metastases. Surg Neurol Int 2013; 4 (5, suppl 4): S209-S219
  • 90 Fordham AJ, Hacherl CC, Patel N. et al. Differentiating glioblastomas from solitary brain metastases: an update on the current literature of advanced imaging modalities. Cancers (Basel) 2021; 13 (12) 2960
  • 91 Server A, Orheim TED, Graff BA, Josefsen R, Kumar T, Nakstad PH. Diagnostic examination performance by using microvascular leakage, cerebral blood volume, and blood flow derived from 3-T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in the differentiation of glioblastoma multiforme and brain metastasis. Neuroradiology 2011; 53 (05) 319-330
  • 92 Blasel S, Jurcoane A, Franz K, Morawe G, Pellikan S, Hattingen E. Elevated peritumoural rCBV values as a mean to differentiate metastases from high-grade gliomas. Acta Neurochir (Wien) 2010; 152 (11) 1893-1899
  • 93 Cha S, Lupo JM, Chen MH. et al. Differentiation of glioblastoma multiforme and single brain metastasis by peak height and percentage of signal intensity recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 2007; 28 (06) 1078-1084
  • 94 Suh CH, Kim HS, Jung SC, Kim SJ. Diffusion-weighted imaging and diffusion tensor imaging for differentiating high-grade glioma from solitary brain metastasis: a systematic review and meta-analysis. AJNR Am J Neuroradiol 2018; 39 (07) 1208-1214
  • 95 Lee D, Riestenberg RA, Haskell-Mendoza A, Bloch O. Brain metastasis recurrence versus radiation necrosis. Neurosurg Clin N Am 2020; 31 (04) 575-587
  • 96 Mitsuya K, Nakasu Y, Horiguchi S. et al. Perfusion weighted magnetic resonance imaging to distinguish the recurrence of metastatic brain tumors from radiation necrosis after stereotactic radiosurgery. J Neurooncol 2010; 99 (01) 81-88
  • 97 Kimura T, Sako K, Gotoh T, Tanaka K, Tanaka T. In vivo single-voxel proton MR spectroscopy in brain lesions with ring-like enhancement. NMR Biomed 2001; 14 (06) 339-349
  • 98 Lyndon D, Lansley JA, Evanson J, Krishnan AS. Dural masses: meningiomas and their mimics. Insights Imaging 2019; 10 (01) 11
  • 99 Singh SK, Agris JM, Leeds NE, Ginsberg LE. Intracranial leptomeningeal metastases: comparison of depiction at FLAIR and contrast-enhanced MR imaging. Radiology 2000; 217 (01) 50-53