Subscribe to RSS
DOI: 10.1055/s-0043-1777702
Cancer Predisposition Syndromes in Neuro-oncology
Funding This work was supported by the Tower Cancer Research Foundation Career Development Award (B.N.) and the Matthew Larson Foundation for Pediatric Brain Tumors Research Grant (B.N.).Abstract
Although most primary central and peripheral nervous system (NS) tumors occur sporadically, there are a subset that may arise in the context of a cancer predisposition syndrome. These syndromes occur due to a pathogenic mutation in a gene that normally functions as a tumor suppressor. With increased understanding of the molecular pathogenesis of these tumors, more people have been identified with a cancer predisposition syndrome. Identification is crucial, as this informs surveillance, diagnosis, and treatment options. Moreover, relatives can also be identified through genetic testing. Although there are many cancer predisposition syndromes that increase the risk of NS tumors, in this review, we focus on three of the most common cancer predisposition syndromes, neurofibromatosis type 1, neurofibromatosis type 2, and tuberous sclerosis complex type 1 and type 2, emphasizing the clinical manifestations, surveillance guidelines, and treatment options.
Publication History
Article published online:
14 December 2023
© 2023. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Anderson JL, Gutmann DH. Neurofibromatosis type 1. Handb Clin Neurol 2015; 132: 75-86
- 2 Ars E, Kruyer H, Morell M. et al. Recurrent mutations in the NF1 gene are common among neurofibromatosis type 1 patients. J Med Genet 2003; 40 (06) e82-e82
- 3 Basu TN, Gutmann DH, Fletcher JA, Glover TW, Collins FS, Downward J. Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature 1992; 356 (6371) 713-715
- 4 Trovó-Marqui AB, Tajara EH. Neurofibromin: a general outlook. Clin Genet 2006; 70 (01) 1-13
- 5 Johnson KJ, Hussain I, Williams K, Santens R, Mueller NL, Gutmann DH. Development of an international internet-based neurofibromatosis Type 1 patient registry. Contemp Clin Trials 2013; 34 (02) 305-311
- 6 Jha SK, Mendez MD. Cafe Au Lait Macules. In: StatPearls. StatPearls Publishing;; 2022. . Accessed February 10, 2023 at: http://www.ncbi.nlm.nih.gov/books/NBK557492/
- 7 Kehrer-Sawatzki H, Cooper DN. Challenges in the diagnosis of neurofibromatosis type 1 (NF1) in young children facilitated by means of revised diagnostic criteria including genetic testing for pathogenic NF1 gene variants. Hum Genet 2022; 141 (02) 177-191
- 8 Legius E, Messiaen L, Wolkenstein P. et al; International Consensus Group on Neurofibromatosis Diagnostic Criteria (I-NF-DC). Revised diagnostic criteria for neurofibromatosis type 1 and Legius syndrome: an international consensus recommendation. Genet Med 2021; 23 (08) 1506-1513
- 9 Messersmith L, Krauland K. Neurofibroma. . In: StatPearls. . StatPearls Publishing; 2022. . Accessed February 11, 2023 at: http://www.ncbi.nlm.nih.gov/books/NBK539707/
- 10 Nguyen R, Kluwe L, Fuensterer C, Kentsch M, Friedrich RE, Mautner VF. Plexiform neurofibromas in children with neurofibromatosis type 1: frequency and associated clinical deficits. J Pediatr 2011; 159 (04) 652-5.e2
- 11 Miller DT, Freedenberg D, Schorry E, Ullrich NJ, Viskochil D, Korf BR. Council on Genetics, American College of Medical Genetics and Genomics. Health supervision for children with neurofibromatosis Type 1. Pediatrics 2019; 143 (05) e20190660
- 12 Duong TA, Sbidian E, Valeyrie-Allanore L. et al. Mortality associated with neurofibromatosis 1: a cohort study of 1895 patients in 1980-2006 in France. Orphanet J Rare Dis 2011; 6 (01) 18
- 13 Higham CS, Dombi E, Rogiers A. et al. The characteristics of 76 atypical neurofibromas as precursors to neurofibromatosis 1 associated malignant peripheral nerve sheath tumors. Neuro-oncol 2018; 20 (06) 818-825
- 14 Wise JB, Cryer JE, Belasco JB, Jacobs I, Elden L. Management of head and neck plexiform neurofibromas in pediatric patients with neurofibromatosis type 1. Arch Otolaryngol Head Neck Surg 2005; 131 (08) 712-718
- 15 Fisher MJ, Blakeley JO, Weiss BD. et al. Management of neurofibromatosis type 1-associated plexiform neurofibromas. Neuro-oncol 2022; 24 (11) 1827-1844
- 16 Friedrich RE, Diekmeier C. Peripheral nerve sheath tumors of the upper extremity and hand in patients with neurofibromatosis type 1: topography of tumors and evaluation of surgical treatment in 62 patients. GMS Interdiscip Plast Reconstr Surg DGPW 2017; 6: Doc15
- 17 Miettinen MM, Antonescu CR, Fletcher CDM. et al. Histopathologic evaluation of atypical neurofibromatous tumors and their transformation into malignant peripheral nerve sheath tumor in neurofibromatosis 1 patients – a consensus overview. Hum Pathol 2017; 67: 1-10
- 18 Rhodes SD, He Y, Smith A. et al. Cdkn2a (Arf) loss drives NF1-associated atypical neurofibroma and malignant transformation. Hum Mol Genet 2019; 28 (16) 2752-2762
- 19 Kresbach C, Dottermusch M, Eckhardt A. et al. Atypical neurofibromas reveal distinct epigenetic features with proximity to benign peripheral nerve sheath tumor entities. Neuro-oncol 2023; 25 (09) 1644-1655
- 20 FDA approves selumetinib for neurofibromatosis type 1 with symptomatic, inoperable plexiform neurofibromas. FDA. Published online April 13, 2020. Accessed February 21, 2023 at: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-selumetinib-neurofibromatosis-type-1-symptomatic-inoperable-plexiform-neurofibromas
- 21 Gross AM, Wolters PL, Dombi E. et al. Selumetinib in children with inoperable plexiform neurofibromas. N Engl J Med 2020; 382 (15) 1430-1442
- 22 Johannessen CM, Johnson BW, Williams SMG. et al. TORC1 is essential for NF1-associated malignancies. Curr Biol 2008; 18 (01) 56-62
- 23 Weiss B, Widemann BC, Wolters P. et al. Sirolimus for progressive neurofibromatosis type 1-associated plexiform neurofibromas: a neurofibromatosis Clinical Trials Consortium phase II study. Neuro-oncol 2015; 17 (04) 596-603
- 24 Sarcoma Alliance for Research through Collaboration. SARC031: A Phase 2 Trial of the MEK Inhibitor Selumetinib (AZD6244 Hydrogen Sulfate) in Combination With the MTOR Inhibitor Sirolimus for Patients With Unresectable or Metastatic Malignant Peripheral Nerve Sheath Tumors. clinicaltrials.gov; 2022 . Accessed February 17, 2023 at: https://clinicaltrials.gov/ct2/show/NCT03433183
- 25 Ahlawat S, Blakeley JO, Langmead S, Belzberg AJ, Fayad LM. Current status and recommendations for imaging in neurofibromatosis type 1, neurofibromatosis type 2, and schwannomatosis. Skeletal Radiol 2020; 49 (02) 199-219
- 26 Fayad LM, Jacobs MA, Wang X, Carrino JA, Bluemke DA. Musculoskeletal tumors: how to use anatomic, functional, and metabolic MR techniques. Radiology 2012; 265 (02) 340-356
- 27 Fayad LM, Wang X, Blakeley JO. et al. Characterization of peripheral nerve sheath tumors with 3T proton MR spectroscopy. AJNR Am J Neuroradiol 2014; 35 (05) 1035-1041
- 28 Venkatesan D, Elangovan A, Winster H. et al. Diagnostic and therapeutic approach of artificial intelligence in neuro-oncological diseases. Biosens Bioelectron X 2022; 11: 100188
- 29 Cassina M, Frizziero L, Opocher E. et al. Optic pathway glioma in type 1 neurofibromatosis: review of its pathogenesis, diagnostic assessment, and treatment recommendations. Cancers (Basel) 2019; 11 (11) 1790
- 30 King A, Listernick R, Charrow J, Piersall L, Gutmann DH. Optic pathway gliomas in neurofibromatosis type 1: the effect of presenting symptoms on outcome. Am J Med Genet A 2003; 122A (02) 95-99
- 31 Fried I, Tabori U, Tihan T, Reginald A, Bouffet E. Optic pathway gliomas: a review. CNS Oncol 2013; 2 (02) 143-159
- 32 Parrozzani R, Clementi M, Kotsafti O. et al. Optical coherence tomography in the diagnosis of optic pathway gliomas. Invest Ophthalmol Vis Sci 2013; 54 (13) 8112-8118
- 33 Fujimoto JG, Pitris C, Boppart SA, Brezinski ME. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2000; 2 (1-2): 9-25
- 34 Johnsen DE, Woodruff WW, Allen IS, Cera PJ, Funkhouser GR, Coleman LL. MR imaging of the sellar and juxtasellar regions. Radiographics 1991; 11 (05) 727-758
- 35 de Blank PMK, Berman JI, Liu GT, Roberts TPL, Fisher MJ. Fractional anisotropy of the optic radiations is associated with visual acuity loss in optic pathway gliomas of neurofibromatosis type 1. Neuro-oncol 2013; 15 (08) 1088-1095
- 36 Henning AM, Handrup MM, Kjeldsen SM, Larsen DA, Ejerskov C. Optic pathway glioma and the sex association in neurofibromatosis type 1: a single-center study. Orphanet J Rare Dis 2021; 16 (01) 489
- 37 Diggs-Andrews KA, Brown JA, Gianino SM, Rubin JB, Wozniak DF, Gutmann DH. Sex Is a major determinant of neuronal dysfunction in neurofibromatosis type 1. Ann Neurol 2014; 75 (02) 309-316
- 38 Fisher MJ, Loguidice M, Gutmann DH. et al. Gender as a disease modifier in neurofibromatosis type 1 optic pathway glioma. Ann Neurol 2014; 75 (05) 799-800
- 39 Imes RK, Hoyt WF. Magnetic resonance imaging signs of optic nerve gliomas in neurofibromatosis 1. Am J Ophthalmol 1991; 111 (06) 729-734
- 40 Van Es S, North KN, McHugh K, De Silva M. MRI findings in children with neurofibromatosis type 1: a prospective study. Pediatr Radiol 1996; 26 (07) 478-487
- 41 Singhal S, Birch JM, Kerr B, Lashford L, Evans DGR. Neurofibromatosis type 1 and sporadic optic gliomas. Arch Dis Child 2002; 87 (01) 65-70
- 42 Sellmer L, Farschtschi S, Marangoni M. et al. Serial MRIs provide novel insight into natural history of optic pathway gliomas in patients with neurofibromatosis 1. Orphanet J Rare Dis 2018; 13 (01) 62
- 43 Piccirilli M, Lenzi J, Delfinis C, Trasimeni G, Salvati M, Raco A. Spontaneous regression of optic pathways gliomas in three patients with neurofibromatosis type I and critical review of the literature. Childs Nerv Syst 2006; 22 (10) 1332-1337
- 44 Huang M, Patel J, Patel BC. Optic nerve glioma. In: StatPearls. . StatPearls Publishing; 2022. . Accessed February 19, 2023 at: http://www.ncbi.nlm.nih.gov/books/NBK557878/
- 45 Packer RJ, Lange B, Ater J. et al. Carboplatin and vincristine for recurrent and newly diagnosed low-grade gliomas of childhood. J Clin Oncol 1993; 11 (05) 850-856
- 46 National Cancer Institute (NCI). A Phase 3 Randomized Non-Inferiority Study of Carboplatin and Vincristine Versus Selumetinib (NSC# 748727) in Newly Diagnosed or Previously Untreated Low-Grade Glioma (LGG) Not Associated With BRAFV600E Mutations or Systemic Neurofibromatosis Type 1 (NF1). clinicaltrials.gov; 2023 . Accessed February 20, 2023 at: https://clinicaltrials.gov/ct2/show/NCT04166409
- 47 Packer R. Phase 1 Study of Tarceva and Rapamycin For Recurrent Low-Grad Gliomas in Children With or Without Neurofibromatosis Type 1 (NF1). clinicaltrials.gov; 2014 . Accessed February 20, 2023 at: https://clinicaltrials.gov/
- 48 MD BK. A Phase II Study of RAD001 (Everolimus) for Children With NeurF1 and Chemotherapy-Refractory Radiographic Progressive Low Grade Gliomas. clinicaltrials.gov; 2020 . Accessed February 20, 2023 at: https://clinicaltrials.gov/ct2/show/NCT01158651
- 49 Desai SS, Paulino AC, Mai WY, Teh BS. Radiation-induced moyamoya syndrome. Int J Radiat Oncol Biol Phys 2006; 65 (04) 1222-1227
- 50 Ullrich NJ, Robertson R, Kinnamon DD. et al. Moyamoya following cranial irradiation for primary brain tumors in children. Neurology 2007; 68 (12) 932-938
- 51 Merchant TE, Kun LE, Wu S, Xiong X, Sanford RA, Boop FA. Phase II trial of conformal radiation therapy for pediatric low-grade glioma. J Clin Oncol 2009; 27 (22) 3598-3604
- 52 Fisher MJ, Jones DTW, Li Y. et al. Integrated molecular and clinical analysis of low-grade gliomas in children with neurofibromatosis type 1 (NF1). Acta Neuropathol 2021; 141 (04) 605-617
- 53 Peltonen S, Kallionpää RA, Rantanen M. et al. Pediatric malignancies in neurofibromatosis type 1: a population-based cohort study. Int J Cancer 2019; 145 (11) 2926-2932
- 54 Guillamo JS, Créange A, Kalifa C. et al; Réseau NF France. Prognostic factors of CNS tumours in neurofibromatosis 1 (NF1): a retrospective study of 104 patients. Brain 2003; 126 (Pt 1): 152-160
- 55 Mahdi J, Shah AC, Sato A. et al. A multi-institutional study of brainstem gliomas in children with neurofibromatosis type 1. Neurology 2017; 88 (16) 1584-1589
- 56 Salman MS, Hossain S, Gorun S, Alqublan L, Bunge M, Rozovsky K. Cerebellar radiological abnormalities in children with neurofibromatosis type 1: part 2 - a neuroimaging natural history study with clinical correlations. Cerebellum Ataxias 2018; 5: 13
- 57 Griffith JL, Morris SM, Mahdi J, Goyal MS, Hershey T, Gutmann DH. Increased prevalence of brain tumors classified as T2 hyperintensities in neurofibromatosis 1. Neurol Clin Pract 2018; 8 (04) 283-291
- 58 Pollack IF, Shultz B, Mulvihill JJ. The management of brainstem gliomas in patients with neurofibromatosis 1. Neurology 1996; 46 (06) 1652-1660
- 59 Molloy PT, Bilaniuk LT, Vaughan SN. et al. Brainstem tumors in patients with neurofibromatosis type 1: a distinct clinical entity. Neurology 1995; 45 (10) 1897-1902
- 60 Costa ADA, Gutmann DH. Brain tumors in neurofibromatosis type 1. Neurooncol Adv 2020; 2 (Suppl. 01) i85-i97
- 61 Sellmer L, Farschtschi S, Marangoni M. et al. Non-optic glioma in adults and children with neurofibromatosis 1. Orphanet J Rare Dis 2017; 12 (01) 34
- 62 Rosenfeld A, Listernick R, Charrow J, Goldman S. Neurofibromatosis type 1 and high-grade tumors of the central nervous system. Childs Nerv Syst 2010; 26 (05) 663-667
- 63 Glombova M, Petrak B, Lisy J, Zamecnik J, Sumerauer D, Liby P. Brain gliomas, hydrocephalus and idiopathic aqueduct stenosis in children with neurofibromatosis type 1. Brain Dev 2019; 41 (08) 678-690
- 64 Packer RJ, Ater J, Allen J. et al. Carboplatin and vincristine chemotherapy for children with newly diagnosed progressive low-grade gliomas. J Neurosurg 1997; 86 (05) 747-754
- 65 Ullrich NJ, Prabhu SP, Reddy AT. et al. A phase II study of continuous oral mTOR inhibitor everolimus for recurrent, radiographic-progressive neurofibromatosis type 1-associated pediatric low-grade glioma: a Neurofibromatosis Clinical Trials Consortium study. Neuro-oncol 2020; 22 (10) 1527-1535
- 66 National Cancer Institute (NCI). A Phase 3 Randomized Study of Selumetinib Versus Carboplatin/Vincristine in Newly Diagnosed or Previously Untreated Neurofibromatosis Type 1 (NF1) Associated Low-Grade Glioma (LGG). clinicaltrials.gov; 2023 . Accessed February 20, 2023 at: https://clinicaltrials.gov/ct2/show/NCT03871257
- 67 D'Angelo F, Ceccarelli M. Tala, et al. The molecular landscape of glioma in patients with Neurofibromatosis 1. Nat Med 2019; 25 (01) 176-187
- 68 Lobbous M, Bernstock JD, Coffee E. et al. An update on neurofibromatosis type 1-associated gliomas. Cancers (Basel) 2020; 12 (01) 114
- 69 Stupp R, Mason WP, van den Bent MJ. et al; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups, National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352 (10) 987-996
- 70 SpringWorks Therapeutics, Inc. A Phase 2b Trial of the MEK 1/2 Inhibitor (MEKi) PD-0325901 in Adult and Pediatric Patients With Neurofibromatosis Type 1 (NF1)-Associated Inoperable Plexiform Neurofibromas (PNs) That Are Causing Significant Morbidity. clinicaltrials.gov; 2022 . Accessed February 20, 2023 at: https://clinicaltrials.gov/ct2/show/NCT03962543
- 71 Romo CG, Slobogean BL, Blair LK, Blakeley JO. Trametinib for aggressive gliomas in adults with neurofibromatosis type 1. J Clin Oncol 2019; 37 (15) e13562-e13562
- 72 MD BK. A Phase II Study of Binimetinib in Children and Adults With NF1 Associated Plexiform Neurofibromas (PNOC010). clinicaltrials.gov; 2022 . Accessed February 20, 2023 at: https://clinicaltrials.gov/ct2/show/NCT03231306
- 73 Klesse LJ, Jordan JT, Radtke HB. et al. The use of MEK inhibitors in neurofibromatosis type 1-associated tumors and management of toxicities. Oncologist 2020; 25 (07) e1109-e1116
- 74 Evans DGR, Moran A, King A, Saeed S, Gurusinghe N, Ramsden R. Incidence of vestibular schwannoma and neurofibromatosis 2 in the North West of England over a 10-year period: higher incidence than previously thought. Otol Neurotol 2005; 26 (01) 93-97
- 75 Evans DG. Neurofibromatosis type 2: genetic and clinical features. Ear Nose Throat J 1999; 78 (02) 97-100
- 76 Halliday D, Emmanouil B, Pretorius P. et al. Genetic Severity Score predicts clinical phenotype in NF2. J Med Genet 2017; 54 (10) 657-664
- 77 Plotkin SR, Messiaen L, Legius E. et al; International Consensus Group on Neurofibromatosis Diagnostic Criteria (I-NF-DC). Updated diagnostic criteria and nomenclature for neurofibromatosis type 2 and schwannomatosis: an international consensus recommendation. Genet Med 2022; 24 (09) 1967-1977
- 78 Maniakas A, Saliba I. Neurofibromatosis type 2 vestibular schwannoma treatment: a review of the literature, trends, and outcomes. Otol Neurotol 2014; 35 (05) 889-894
- 79 Mansouri S, Suppiah S, Mamatjan Y. et al. Epigenomic, genomic, and transcriptomic landscape of schwannomatosis. Acta Neuropathol 2021; 141 (01) 101-116
- 80 Coy S, Rashid R, Stemmer-Rachamimov A, Santagata S. An update on the CNS manifestations of neurofibromatosis type 2. Acta Neuropathol 2020; 139 (04) 643-665
- 81 Roosli C, Linthicum Jr FH, Cureoglu S, Merchant SN. Dysfunction of the cochlea contributing to hearing loss in acoustic neuromas: an underappreciated entity. Otol Neurotol 2012; 33 (03) 473-480
- 82 Morris KA, Golding JF, Axon PR. et al; UK NF2 Research Group. Bevacizumab in neurofibromatosis type 2 (NF2) related vestibular schwannomas: a nationally coordinated approach to delivery and prospective evaluation. Neurooncol Pract 2016; 3 (04) 281-289
- 83 Blakeley JO, Ye X, Duda DG. et al. Efficacy and biomarker study of bevacizumab for hearing loss resulting from neurofibromatosis type 2-associated vestibular schwannomas. J Clin Oncol 2016; 34 (14) 1669-1675
- 84 Plotkin SR, Duda DG, Muzikansky A. et al. Multicenter, prospective, phase II and biomarker study of high-dose bevacizumab as induction therapy in patients with neurofibromatosis type 2 and progressive vestibular schwannoma. J Clin Oncol 2019; 37 (35) 3446-3454
- 85 Karajannis MA, Legault G, Hagiwara M. et al. Phase II trial of lapatinib in adult and pediatric patients with neurofibromatosis type 2 and progressive vestibular schwannomas. Neuro-oncol 2012; 14 (09) 1163-1170
- 86 Fuse MA, Dinh CT, Vitte J. et al. Preclinical assessment of MEK1/2 inhibitors for neurofibromatosis type 2-associated schwannomas reveals differences in efficacy and drug resistance development. Neuro-oncol 2019; 21 (04) 486-497
- 87 Blakeley JO, Evans DG, Adler J. et al. Consensus recommendations for current treatments and accelerating clinical trials for patients with neurofibromatosis type 2. Am J Med Genet A 2012; 158A (01) 24-41
- 88 Evans DGR, Salvador H, Chang VY. et al. Cancer and central nervous system tumor surveillance in pediatric neurofibromatosis 2 and related disorders. Clin Cancer Res 2017; 23 (12) e54-e61
- 89 Mathieu D, Kondziolka D, Flickinger JC. et al. Stereotactic radiosurgery for vestibular schwannomas in patients with neurofibromatosis type 2: an analysis of tumor control, complications, and hearing preservation rates. Neurosurgery 2007; 60 (03) 460-468 , discussion 468–470
- 90 Mautner VF, Tatagiba M, Lindenau M. et al. Spinal tumors in patients with neurofibromatosis type 2: MR imaging study of frequency, multiplicity, and variety. AJR Am J Roentgenol 1995; 165 (04) 951-955
- 91 Smith MJ, Higgs JE, Bowers NL. et al. Cranial meningiomas in 411 neurofibromatosis type 2 (NF2) patients with proven gene mutations: clear positional effect of mutations, but absence of female severity effect on age at onset. J Med Genet 2011; 48 (04) 261-265
- 92 Perry A, Kurtkaya-Yapicier O, Scheithauer BW. et al. Insights into meningioangiomatosis with and without meningioma: a clinicopathologic and genetic series of 24 cases with review of the literature. Brain Pathol 2005; 15 (01) 55-65
- 93 Wiebe S, Munoz DG, Smith S, Lee DH. Meningioangiomatosis. A comprehensive analysis of clinical and laboratory features. Brain 1999; 122 (Pt 4): 709-726
- 94 Alanin MC, Klausen C, Caye-Thomasen P. et al. Effect of bevacizumab on intracranial meningiomas in patients with neurofibromatosis type 2 - a retrospective case series. Int J Neurosci 2016; 126 (11) 1002-1006
- 95 Nunes FP, Merker VL, Jennings D. et al. Bevacizumab treatment for meningiomas in NF2: a retrospective analysis of 15 patients. PLoS One 2013; 8 (03) e59941
- 96 Shih KC, Chowdhary S, Rosenblatt P. et al. A phase II trial of bevacizumab and everolimus as treatment for patients with refractory, progressive intracranial meningioma. J Neurooncol 2016; 129 (02) 281-288
- 97 Osorio DS, Hu J, Mitchell C. et al. Effect of lapatinib on meningioma growth in adults with neurofibromatosis type 2. J Neurooncol 2018; 139 (03) 749-755
- 98 Welling DB, Collier KA, Burns SS. et al. Early phase clinical studies of AR-42, a histone deacetylase inhibitor, for neurofibromatosis type 2-associated vestibular schwannomas and meningiomas. Laryngoscope Investig Otolaryngol 2021; 6 (05) 1008-1019
- 99 Kalamarides M, Essayed W, Lejeune JP. et al. Spinal ependymomas in NF2: a surgical disease?. J Neurooncol 2018; 136 (03) 605-611
- 100 Plotkin SR, O'Donnell CC, Curry WT, Bove CM, MacCollin M, Nunes FP. Spinal ependymomas in neurofibromatosis Type 2: a retrospective analysis of 55 patients. J Neurosurg Spine 2011; 14 (04) 543-547
- 101 Kresbach C, Dorostkar MM, Suwala AK. et al. Neurofibromatosis type 2 predisposes to ependymomas of various localization, histology, and molecular subtype. Acta Neuropathol 2021; 141 (06) 971-974
- 102 Snyder MH, Ampie L, DiDomenico JD, Asthagiri AR. Bevacizumab as a surgery-sparing agent for spinal ependymoma in patients with neurofibromatosis type II: Systematic review and case. J Clin Neurosci 2021; 86: 79-84
- 103 Green AJ, Smith M, Yates JR. Loss of heterozygosity on chromosome 16p13.3 in hamartomas from tuberous sclerosis patients. Nat Genet 1994; 6 (02) 193-196
- 104 van Slegtenhorst M, de Hoogt R, Hermans C. et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 1997; 277 (5327) 805-808
- 105 Curatolo P, Bombardieri R. Tuberous sclerosis. Handb Clin Neurol 2008; 87: 129-151
- 106 Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 2003; 5 (06) 578-581
- 107 Jones AC, Daniells CE, Snell RG. et al. Molecular genetic and phenotypic analysis reveals differences between TSC1 and TSC2 associated familial and sporadic tuberous sclerosis. Hum Mol Genet 1997; 6 (12) 2155-2161
- 108 Hoogeveen-Westerveld M, Ekong R, Povey S. et al. Functional assessment of TSC1 missense variants identified in individuals with tuberous sclerosis complex. Hum Mutat 2012; 33 (03) 476-479
- 109 Sancak O, Nellist M, Goedbloed M. et al. Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype–phenotype correlations and comparison of diagnostic DNA techniques in tuberous sclerosis complex. Eur J Hum Genet 2005; 13 (06) 731-741
- 110 Holmes GL, Stafstrom CE. Tuberous Sclerosis Study Group. Tuberous sclerosis complex and epilepsy: recent developments and future challenges. Epilepsia 2007; 48 (04) 617-630
- 111 Curatolo P, Moavero R, de Vries PJ. Neurological and neuropsychiatric aspects of tuberous sclerosis complex. Lancet Neurol 2015; 14 (07) 733-745
- 112 Kaczorowska M, Jurkiewicz E, Domańska-Pakieła D. et al. Cerebral tuber count and its impact on mental outcome of patients with tuberous sclerosis complex. Epilepsia 2011; 52 (01) 22-27
- 113 Aronica E, Crino PB. Epilepsy related to developmental tumors and malformations of cortical development. Neurotherapeutics 2014; 11 (02) 251-268
- 114 Krueger DA, Northrup H. International Tuberous Sclerosis Complex Consensus Group. Tuberous sclerosis complex surveillance and management: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol 2013; 49 (04) 255-265
- 115 Kossoff EH, Thiele EA, Pfeifer HH, McGrogan JR, Freeman JM. Tuberous sclerosis complex and the ketogenic diet. Epilepsia 2005; 46 (10) 1684-1686
- 116 Kotulska K, Kwiatkowski DJ, Curatolo P. et al; EPISTOP Investigators. Prevention of epilepsy in infants with tuberous sclerosis complex in the EPISTOP trial. Ann Neurol 2021; 89 (02) 304-314
- 117 Perek-Polnik M, Jóźwiak S, Jurkiewicz E, Perek D, Kotulska K. Effective everolimus treatment of inoperable, life-threatening subependymal giant cell astrocytoma and intractable epilepsy in a patient with tuberous sclerosis complex. Eur J Paediatr Neurol 2012; 16 (01) 83-85
- 118 Jansen AC, Belousova E, Benedik MP. et al. Clinical characteristics of subependymal giant cell astrocytoma in tuberous sclerosis complex. Front Neurol 2019; 10: 705
- 119 Franz DN, Belousova E, Sparagana S. et al. Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 2013; 381 (9861) 125-132
- 120 French JA, Lawson JA, Yapici Z. et al. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet 2016; 388 (10056): 2153-2163
- 121 Franz DN. Everolimus in the treatment of subependymal giant cell astrocytomas, angiomyolipomas, and pulmonary and skin lesions associated with tuberous sclerosis complex. Biologics 2013; 7: 211-221
- 122 Franz DN, Belousova E, Sparagana S. et al. Long-term use of everolimus in patients with tuberous sclerosis complex: final results from the EXIST-1 Study. PLoS One 2016; 11 (06) e0158476