Semin Thromb Hemost 2025; 51(03): 322-328
DOI: 10.1055/s-0044-1791779
Review Article

Hereditary Angioedema and Venous Thromboembolism: Where There's Smoke, There's Fire

Steven P. Grover
1   UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
2   Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
› Institutsangaben
Funding This work was supported by a Scholar Award from the American Society of Hematology and R01HL171042 from the National Heart, Lung, and Blood Institute of the National Institutes of Health to S.P.G. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Abstract

C1-inhibitor deficiency–associated hereditary angioedema (C1INH-HAE) is a rare congenital swelling disorder caused by mutations in the SERPING1 gene. Despite evidence of a systemic procoagulant state in C1INH-HAE, dogma held that this disorder was not associated with thrombotic pathologies. Recent population scale epidemiological evidence has directly challenged this, with C1INH-HAE being associated with a significantly increased risk of venous thromboembolism (VTE). This review considers the growing body of evidence supporting associations between HAE and both a systemic procoagulant state and an increased risk of VTE. In the setting of C1INH-HAE, the relationship between the observed procoagulant and thrombotic phenotypes is a prime example of “where there's smoke, there's fire.” This review also discusses the impact of C1INH-HAE disease modifying therapies on coagulation and VTE. Further, the utility of preclinical mouse models of C1-inhibitor deficiency is considered.



Publikationsverlauf

Artikel online veröffentlicht:
17. Oktober 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Busse PJ, Christiansen SC. Hereditary angioedema. N Engl J Med 2020; 382 (12) 1136-1148
  • 2 Haslund D, Ryø LB, Seidelin Majidi S. et al. Dominant-negative SERPING1 variants cause intracellular retention of C1 inhibitor in hereditary angioedema. J Clin Invest 2019; 129 (01) 388-405
  • 3 Davis III AE, Mejia P, Lu F. Biological activities of C1 inhibitor. Mol Immunol 2008; 45 (16) 4057-4063
  • 4 Grover SP, Mackman N. Anticoagulant SERPINs: endogenous regulators of hemostasis and thrombosis. Front Cardiovasc Med 2022; 9: 878199
  • 5 Grover SP, Mackman N. Intrinsic pathway of coagulation and thrombosis. Arterioscler Thromb Vasc Biol 2019; 39 (03) 331-338
  • 6 Maas C, Renné T. Coagulation factor XII in thrombosis and inflammation. Blood 2018; 131 (17) 1903-1909
  • 7 Schmaier AH. The contact activation and kallikrein/kinin systems: pathophysiologic and physiologic activities. J Thromb Haemost 2016; 14 (01) 28-39
  • 8 Shamanaev A, Litvak M, Gailani D. Recent advances in factor XII structure and function. Curr Opin Hematol 2022; 29 (05) 233-243
  • 9 de Maat S, Joseph K, Maas C, Kaplan AP. Blood clotting and the pathogenesis of types I and II hereditary angioedema. Clin Rev Allergy Immunol 2021; 60 (03) 348-356
  • 10 De Maat S, Hofman ZLM, Maas C. Hereditary angioedema: the plasma contact system out of control. J Thromb Haemost 2018; 16 (09) 1674-1685
  • 11 Levi M, Cohn DM, Zeerleder S. Hereditary angioedema: linking complement regulation to the coagulation system. Res Pract Thromb Haemost 2018; 3 (01) 38-43
  • 12 Reshef A, Zanichelli A, Longhurst H, Relan A, Hack CE. Elevated D-dimers in attacks of hereditary angioedema are not associated with increased thrombotic risk. Allergy 2015; 70 (05) 506-513
  • 13 Konings J, Cugno M, Suffritti C, Ten Cate H, Cicardi M, Govers-Riemslag JW. Ongoing contact activation in patients with hereditary angioedema. PLoS One 2013; 8 (08) e74043
  • 14 Csuka D, Veszeli N, Imreh É. et al. Comprehensive study into the activation of the plasma enzyme systems during attacks of hereditary angioedema due to C1-inhibitor deficiency. Orphanet J Rare Dis 2015; 10: 132
  • 15 Bork K, Witzke G. Shortened activated partial thromboplastin time may help in diagnosing hereditary and acquired angioedema. Int Arch Allergy Immunol 2016; 170 (02) 101-107
  • 16 Grover SP, Kawano T, Wan J. et al. C1 inhibitor deficiency enhances contact pathway-mediated activation of coagulation and venous thrombosis. Blood 2023; 141 (19) 2390-2401
  • 17 van Geffen M, Cugno M, Lap P, Loof A, Cicardi M, van Heerde W. Alterations of coagulation and fibrinolysis in patients with angioedema due to C1-inhibitor deficiency. Clin Exp Immunol 2012; 167 (03) 472-478
  • 18 Luddington R, Baglin T. Clinical measurement of thrombin generation by calibrated automated thrombography requires contact factor inhibition. J Thromb Haemost 2004; 2 (11) 1954-1959
  • 19 Gramstad OR, Schjalm C, Mollnes TE, Nielsen EW. Increased thromboinflammatory load in hereditary angioedema. Clin Exp Immunol 2023; 214 (02) 170-181
  • 20 Cugno M, Cicardi M, Bottasso B. et al. Activation of the coagulation cascade in C1-inhibitor deficiencies. Blood 1997; 89 (09) 3213-3218
  • 21 Cugno M, Zanichelli A, Bellatorre AG, Griffini S, Cicardi M. Plasma biomarkers of acute attacks in patients with angioedema due to C1-inhibitor deficiency. Allergy 2009; 64 (02) 254-257
  • 22 Wendelboe A, Weitz JI. Global health burden of venous thromboembolism. Arterioscler Thromb Vasc Biol 2024; 44 (05) 1007-1011
  • 23 Reitsma PH, Versteeg HH, Middeldorp S. Mechanistic view of risk factors for venous thromboembolism. Arterioscler Thromb Vasc Biol 2012; 32 (03) 563-568
  • 24 Moran J, Bauer KA. Managing thromboembolic risk in patients with hereditary and acquired thrombophilias. Blood 2020; 135 (05) 344-350
  • 25 Campello E, Prandoni P. Evolving knowledge on primary and secondary prevention of venous thromboembolism in carriers of hereditary thrombophilia: a narrative review. Semin Thromb Hemost 2022; 48 (08) 937-948
  • 26 Sundler Björkman L, Persson B, Aronsson D, Skattum L, Nordenfelt P, Egesten A. Comorbidities in hereditary angioedema: a population-based cohort study. Clin Transl Allergy 2022; 12 (03) e12135
  • 27 Grover SP, Sundler Björkman L, Egesten A, Moll S, Mackman N. Hereditary angioedema is associated with an increased risk of venous thromboembolism. J Thromb Haemost 2022; 20 (11) 2703-2706
  • 28 Sundler Björkman L, Pirouzifard M, Grover SP. et al. Increased risk of venous thromboembolism in young and middle-aged individuals with hereditary angioedema: a family study. Blood 2024; 144 (04) 435-444
  • 29 Ginsberg JS, Brill-Edwards P, Panju A. et al. Pre-operative plasma levels of thrombin-antithrombin III complexes correlate with the development of venous thrombosis after major hip or knee surgery. Thromb Haemost 1995; 74 (02) 602-605
  • 30 Cofrancesco E, Cortellaro M, Corradi A, Ravasi F, Bertocchi F. Coagulation activation markers in the prediction of venous thrombosis after elective hip surgery. Thromb Haemost 1997; 77 (02) 267-269
  • 31 Andreescu AC, Cushman M, Rosendaal FR. D-dimer as a risk factor for deep vein thrombosis: the Leiden Thrombophilia study. Thromb Haemost 2002; 87 (01) 47-51
  • 32 Hansen ES, Rinde FB, Edvardsen MS. et al. Elevated plasma D-dimer levels are associated with risk of future incident venous thromboembolism. Thromb Res 2021; 208: 121-126
  • 33 Bauer KA, Goodman TL, Kass BL, Rosenberg RD. Elevated factor Xa activity in the blood of asymptomatic patients with congenital antithrombin deficiency. J Clin Invest 1985; 76 (02) 826-836
  • 34 Bauer KA, Rosenberg RD. Congenital antithrombin III deficiency: insights into the pathogenesis of the hypercoagulable state and its management using markers of hemostatic system activation. Am J Med 1989; 87 (3B): 39S-43S
  • 35 Demers C, Ginsberg JS, Henderson P, Ofosu FA, Weitz JI, Blajchman MA. Measurement of markers of activated coagulation in antithrombin III deficient subjects. Thromb Haemost 1992; 67 (05) 542-544
  • 36 Natorska J, Corral J, de la Morena-Barrio ME. et al. Antithrombin deficiency is associated with prothrombotic plasma fibrin clot phenotype. Thromb Haemost 2023; 123 (09) 880-891
  • 37 Bauer KA, Broekmans AW, Bertina RM. et al. Hemostatic enzyme generation in the blood of patients with hereditary protein C deficiency. Blood 1988; 71 (05) 1418-1426
  • 38 Zöller B, Holm J, Svensson P, Dahlbäck B. Elevated levels of prothrombin activation fragment 1 + 2 in plasma from patients with heterozygous Arg506 to Gln mutation in the factor V gene (APC-resistance) and/or inherited protein S deficiency. Thromb Haemost 1996; 75 (02) 270-274
  • 39 Reshef A, Levy D, Longhurst H. et al. Effects of continuous plasma-derived subcutaneous C1-esterase inhibitor on coagulation and fibrinolytic parameters. Thromb Haemost 2021; 121 (05) 690-693
  • 40 Grover SP, Snir O, Hindberg K. et al. High plasma levels of C1-inhibitor are associated with lower risk of future venous thromboembolism. J Thromb Haemost 2023; 21 (07) 1849-1860
  • 41 Yuan S, Xu F, Zhang H. et al. Proteomic insights into modifiable risk of venous thromboembolism and cardiovascular comorbidities. J Thromb Haemost 2024; 22 (03) 738-748
  • 42 Petersen RS, Fijen LM, Cohn DM. “Hereditary angioedema is associated with an increased risk of venous thromboembolism”: comment from Petersen et al. J Thromb Haemost 2023; 21 (01) 179
  • 43 Frank MM, Sergent JS, Kane MA, Alling DW. Epsilon aminocaproic acid therapy of hereditary angioneurotic edema. A double-blind study. N Engl J Med 1972; 286 (15) 808-812
  • 44 Sheffer AL, Austen KF, Rosen FS. Tranexamic acid therapy in hereditary angioneurotic edema. N Engl J Med 1972; 287 (09) 452-454
  • 45 Sundler Björkman L, Thulin M, Ekström M, Nordenfelt P, Egesten A. Trends in treatments with disease-specific and interfering drugs in patients with hereditary angioedema in Sweden. J Allergy Clin Immunol Pract 2023; 11 (02) 621-628
  • 46 Fouche PF, Stein C, Nichols M. et al. Tranexamic acid for traumatic injury in the emergency setting: a systematic review and bias-adjusted meta-analysis of randomized controlled trials. Ann Emerg Med 2024; 83 (05) 435-445
  • 47 O'Donnell O, Gallagher C, Davey MG, Coulter J, Regan M. A systematic review and meta-analysis assessing the use of tranexamic acid (TXA) in acute gastrointestinal bleeding. Ir J Med Sci 2024; 193 (02) 705-719
  • 48 Chornenki NLJ, Um KJ, Mendoza PA. et al. Risk of venous and arterial thrombosis in non-surgical patients receiving systemic tranexamic acid: a systematic review and meta-analysis. Thromb Res 2019; 179: 81-86
  • 49 Taeuber I, Weibel S, Herrmann E. et al. Association of intravenous tranexamic acid with thromboembolic events and mortality: a systematic review, meta-analysis, and meta-regression. JAMA Surg 2021; 156 (06) e210884
  • 50 Ker K, Edwards P, Perel P, Shakur H, Roberts I. Effect of tranexamic acid on surgical bleeding: systematic review and cumulative meta-analysis. BMJ 2012; 344: e3054
  • 51 Stieh J, Harding P, Scheewe J, Dutschke P, Kramer HH. Capillary leak syndrome after open heart surgery for congenital heart defects: therapy with C1-inhibitor. Biomed Prog 1996; 9: 13-16
  • 52 Arzneimittelkommission der deutschen Ärzteschaft. Schwerwiegende Thrombenbildung nach Berinert HS. Dtsch Arztebl 2000; 97: B-864
  • 53 Food and Drug Administration. Berinert Package Insert FDA. Accessed July 31, 2024 at: https://www.fda.gov/media/77803/download?attachment
  • 54 Food and Drug Administration. Cinryze Package Insert FDA. Accessed July 31, 2024 at: https://www.fda.gov/media/75907/download?attachment
  • 55 Food and Drug Administration. Ruconest Package Insert FDA. Accessed July 31, 2024 at: https://www.fda.gov/media/89212/download?attachment
  • 56 Food and Drug Administration. Haegarda Package Insert FDA. Accessed July 31, 2024 at: https://www.fda.gov/media/105611/download?attachment
  • 57 Gandhi PK, Gentry WM, Bottorff MB. Thrombotic events associated with C1 esterase inhibitor products in patients with hereditary angioedema: investigation from the United States Food and Drug Administration adverse event reporting system database. Pharmacotherapy 2012; 32 (10) 902-909
  • 58 Burnham K, Reinert JP. Thromboembolic risk of C1 esterase inhibitors: a systematic review on current evidence. Expert Rev Clin Pharmacol 2020; 13 (07) 779-786
  • 59 Craig TJ, Levy RJ, Wasserman RL. et al. Efficacy of human C1 esterase inhibitor concentrate compared with placebo in acute hereditary angioedema attacks. J Allergy Clin Immunol 2009; 124 (04) 801-808
  • 60 Zuraw B, Cicardi M, Levy RJ. et al. Recombinant human C1-inhibitor for the treatment of acute angioedema attacks in patients with hereditary angioedema. J Allergy Clin Immunol 2010; 126 (04) 821-827.e14
  • 61 Zuraw BL, Busse PJ, White M. et al. Nanofiltered C1 inhibitor concentrate for treatment of hereditary angioedema. N Engl J Med 2010; 363 (06) 513-522
  • 62 Riedl MA, Bernstein JA, Li H. et al; Study 1310 Investigators. Recombinant human C1-esterase inhibitor relieves symptoms of hereditary angioedema attacks: phase 3, randomized, placebo-controlled trial. Ann Allergy Asthma Immunol 2014; 112 (02) 163-169.e1
  • 63 Longhurst H, Cicardi M, Craig T. et al; COMPACT Investigators. Prevention of hereditary angioedema attacks with a subcutaneous C1 inhibitor. N Engl J Med 2017; 376 (12) 1131-1140
  • 64 Lumry WR, Martinez-Saguer I, Yang WH. et al; SAHARA study group. Fixed-dose subcutaneous C1-inhibitor liquid for prophylactic treatment of C1-INH-HAE: SAHARA randomized study. J Allergy Clin Immunol Pract 2019; 7 (05) 1610-1618.e4
  • 65 Relan A, Bakhtiari K, van Amersfoort ES, Meijers JC, Hack CE. Recombinant C1-inhibitor: effects on coagulation and fibrinolysis in patients with hereditary angioedema. BioDrugs 2012; 26 (01) 43-52
  • 66 Farkas H, Kőhalmi KV, Veszeli N, Zotter Z, Várnai K, Varga L. Risk of thromboembolism in patients with hereditary angioedema treated with plasma-derived C1-inhibitor. Allergy Asthma Proc 2016; 37 (02) 164-170
  • 67 Han ED, MacFarlane RC, Mulligan AN, Scafidi J, Davis III AE. Increased vascular permeability in C1 inhibitor-deficient mice mediated by the bradykinin type 2 receptor. J Clin Invest 2002; 109 (08) 1057-1063
  • 68 Oschatz C, Maas C, Lecher B. et al. Mast cells increase vascular permeability by heparin-initiated bradykinin formation in vivo. Immunity 2011; 34 (02) 258-268
  • 69 Qiu T, Chiuchiolo MJ, Whaley AS. et al. Gene therapy for C1 esterase inhibitor deficiency in a murine model of hereditary angioedema. Allergy 2019; 74 (06) 1081-1089
  • 70 Bupp S, Whittaker M, Lehtimaki M. et al. A novel murine in vivo model for acute hereditary angioedema attacks. Sci Rep 2021; 11 (01) 15924
  • 71 Lee S, Kim Y, Kim YS, Zhang H, Noh M, Kwon YG. CU06-1004 alleviates vascular hyperpermeability in a murine model of hereditary angioedema by protecting the endothelium. Allergy 2023; 78 (05) 1333-1346