Anästhesiol Intensivmed Notfallmed Schmerzther 2001; 36(10): 628-639
DOI: 10.1055/s-2001-17675
ORIGINALIA
© Georg Thieme Verlag Stuttgart · New York

Antithrombin (AT) - Wirkung:
Experimentelle und klinische
Ergebnisse

Actions of Antithrombin (AT): experimental and clinical resultsR. U. Scherer1 , S. Pulletz1 , S. Ziemer2 , J. Peters3
  • 1Zentrale Abteilung für Anästhesiologie und Intensivmedizin, Evang. und Johanniter Kliniken Duisburg / Dinslaken / Oberhausen gGmbH
  • 2Institut für Laboratoriumsmedizin und Pathobiochemie
    Universitätsklinikum Charité Berlin, Campus Charité Mitte
  • 3Abteilung für Anästhesiologie und Intensivmedizin
    Universitätsklinikum Essen
Further Information

Publication History

Publication Date:
05 October 2001 (online)

Zusammenfassung.

Zielsetzung: Der Einsatz von Antithrombin (AT, Antithrombin III) bei Patienten mit Verbrauchskoagulopathie (DIC) und/oder Sepsis wird wegen inkonsistenter experimenteller und klinischer Ergebnisse hinsichtlich der Beeinflussung der Letalität kontrovers diskutiert. Inzwischen sind zahlreiche klinische Studien beendet worden, und experimentelle Untersuchungen haben den Wirkmechanismus des AT weiter aufgeklärt. In einer systematischen Zusammenfassung der Literatur (Medline, Handsuche) werden die gesicherten Ergebnisse der Physiologie und Pathophysiologie der AT-Wirkung sowie die experimentellen und klinischen Effekte der AT-Zufuhr analysiert. Ergebnisse: AT bindet physiologischerweise an endotheliale Mucopolysaccharide, die Glykosaminoglykane (GAG). Erst diese Bindung führt zu einer Konformationsänderung des AT, die seine Aktivität gegenüber aktivierten Gerinnungsfaktoren steigert. Experimente zeigen, daß die AT-Zufuhr die DIC verkürzt und zu geringeren Fibrinablagerungen in den Organen führt. Die hochdosierte Zufuhr von AT - im Experiment werden bei mehr als 250 E kg-1 i. v. in der Regel nach ca. 4 h Aktivitäten von 200 bis 500 % erreicht - senkt die Letalität bei DIC und hat außerdem antiinflammatorische Effekte, die wahrscheinlich auf einer Steigerung der endothelialen Prostacyclinsynthese durch Bindung des AT an den endothelialen GAGs beruhen. Diese Effekte bestehen in einer Senkung der Konzentration proinflammatorischer Mediatoren, der Verminderung der leukozytären Adhäsion (rolling und sticking) und der Verbesserung von Organfunktionen. Im Experiment verhindert Heparin diese gewünschten Effekte, da es AT bindet und es somit von seinen endothelialen Bindungspartnern, den Glykosaminoglykanen, fernhält. Die Zufuhr von AT-Konzentraten führt bei Patienten mit DIC zu einer signifikanten Verringerung der laboratoriumsdiagnostisch erkennbaren pathologischen Gerinnungsaktivierung. Auch bei septischen Patienten kommt es zu einer Verkürzung der DIC und zu einer Verbesserung von Organfunktionen. Signifikante Überlebensvorteile konnten jedoch weder für Patienten mit DIC noch in einer multizentrischen Studie mit über 2000 Patienten mit Sepsis nachgewiesen werden. Schlussfolgerung: Die AT-Substitution senkt im Experiment und beim Menschen den Aktivierungsgrad der Prokoagulatoren und kann damit die systemische Thrombinbildung signifikant reduzieren. Als therapeutische Option ist die Verkürzung der Dauer einer klinisch und laboratoriumsmedizinisch definierten DIC durch AT-Konzentrate anzusehen, die nicht nur experimentell, sondern auch bei Patienten nachgewiesen ist. An den bisher untersuchten Patientenzahlen konnte eine statistische Signifikanz hinsichtlich der Verbesserung der Letalität der Patienten allerdings nicht gezeigt werden. Die Diagnose „Sepsis / SIRS” stellt nach den jetzt vorliegenden Studienergebnissen keine Indikation für eine hochdosierte AT-Substitution mit 30.000 E über 4 Tage dar.

Actions of Antithrombin (AT): Experimental and Clinical Results.

Objective: Experimental and clinical effects of antithrombin (AT) have been studied widely. However, the therapeutic use of antithrombin concentrates remains controversial due to a major discrepancy between experimental and clinical data concerning AT induced effects on mortality. Meanwhile, studies including larger numbers of patients have been performed, and experimental data have elucidated the mechanisms by which AT may induce antiinflammatory effects. A systematical review of experimental and clinical studies was performed using databases (Medline) and hand-search. Results: Binding of AT to endothelial glycosaminoglycans has been established as a prerequisite for coagulation factor inhibition and induction of endothelial prostacyclin production. Heparin shifts AT activity away from endothelium related effects towards systemic anticoagulation. Animals given more than 250 U AT show significantly reduced mortality in DIC and sepsis or septic shock. Antiinflammatory effects are mediated by prostacyclin and include the reduction of proinflammatory mediators, the reduction of leucocyte rolling and sticking, and improvement of organ function. AT concentrates have been shown to reduce procoagulant turnover in patients with DIC. Laboratory markers of DIC normalize within significantly shorter time periods when AT is administered. In septic patients DIC is markedly attenuated and organ function can be improved significantly. However, survival has never been shown to improve with AT-therapy. Even a multicenter trial including more than 2000 patients with sepsis could not demonstrate a better outcome when 30.000 U AT were given within four days. Of note, 90-day mortality was significantly reduced only in patients without heparin. Whether heparin abolishes antiinflammatory effects of AT in man deserves further study. Conclusions: AT-infusion in patients with DIC aimed at activities of 80-100% reduces procoagulant turnover and hence attenuates disseminated fibrin deposition and coagulation factor and inhibitor consumption. So far, high-dose AT-infusions for 4 days in septic patients without DIC are not indicated since no effect on survival could be shown.

Literatur

  • 1 Blomback M, Abildgaard U, van-den-Besselaar A M. et al . Nomenclature of quantities and units in thrombosis and haemostasis (recommendation 1993). A Collaborative project of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis (ISTH/ SSC) and the Commission/Committee on Quantities and Units (in Clinical Chemistry) of the International Union of Pure and Applied Chemistry-International Federation of Clinical Chemistry (IUPAC-IFCC/CQU(CC)).  Thromb Haemost. 1994;  71 375-394
  • 2 Schmidt A. Über den flüssigen Zustand des Blutes im Organismus.  Zbl Physiol. 1890;  4 257-279
  • 3 Gromnica I E, Ziemer S. Treatment with AT III concentrates in hereditary and acquired AT III deficiency.  Folia Haematol Int Mag Klin Morphol Blutforsch. 1988;  115 307-313
  • 4 Thaler E, Lechner K. Antithrombin III deficiency and thromboembolism.  Clin Haematol. 1981;  10 369-390
  • 5 Rosenberg R D. Actions and interactions of antithrombin and heparin.  N Engl J Med. 1975;  292 146-151
  • 6 Rosenberg R D, Bauer K A. Thrombosis in inherited deficiencies of antithrombin, protein C, and protein S.  Hum Pathol. 1987;  18 253-262
  • 7 Quick A J. The normal antithrombin of the blood and its relations to heparin.  Am J Physiol. 1938;  123 712-719
  • 8 Shifman M A, Pizzo S V. The in vivo metabolism of antithrombin III and antithrombin III complexes.  J Biol Chem. 1982;  257 3243-3248
  • 9 Marcum J A, Reilly C F, Rosenberg R D. The role of specific forms of heparan sulfate in regulating blood vessel wall function.  Prog Hemost Thromb. 1986;  8 185-215
  • 10 Marcum J A, McKenney J B, Rosenberg R D. Acceleration of thrombin-antithrombin complex formation in rat hindquarters via heparinlike molecules bound to the endothelium.  J Clin Invest. 1984;  74 341-350
  • 11 Okajima K, Ueyama H, Hashimoto Y . et al . Homozygous variant of antithrombin III that lacks affinity for heparin, AT III Kumamoto.  Thromb Haemost. 1989;  61 20-24
  • 12 Tulinsky A. Molecular Interactions of Thrombin.  Semin Thromb Hemost. 1996;  22 117-124
  • 13 De-Cristofaro R, De-Candia E, Rutella S, Weitz J I. The Asp(272)-Glu(282) region of platelet glycoprotein Ibalpha interacts with the heparin-binding site of alpha-thrombin and protects the enzyme from the heparin-catalyzed inhibition by antithrombin III.  J Biol Chem. 2000;  275 3887-3895
  • 14 Harenberg J, Stehle G, Augustin J, Zimmermann R. Comparative human pharmacology of low molecular weight heparins.  Semin Thromb Hemost. 1989;  15 414-423
  • 15 Bratt G, Tornebohm E, Widlund L, Lockner D. Low molecular weight heparin (KABI 2165, Fragmin): pharmacokinetics after intravenous and subcutaneous administration in human volunteers.  Thromb Res. 1986;  42 613-620
  • 16 Horie S, Ishii H, Kazama M. Heparin-like glycosaminoglycan is a receptor for antithrombin III-dependent but not for thrombin-dependent prostacyclin production in human endothelial cells.  Thromb Res. 1990;  59 895-904
  • 17 Yamauchi T, Umeda F, Inoguchi T, Nawata H. Antithrombin III stimulates prostacyclin production by cultured aortic endothelial cells.  Biochem Biophys Res Commun. 1989;  163 1404-1411
  • 18 Moncada S, Gryglewski R J, Bunting S, Vane J R. A lipid peroxide inhibits the enzyme in blood vessel microsomes that generates from prostaglandin endoperoxides the substance (prostaglandin X) which prevents platelet aggregation.  Prostaglandins. 1976;  12 715-737
  • 19 Bunting S, Gryglewski R, Moncada S, Vane J R. Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin X) which relaxes strips of mesenteric and coeliac ateries and inhibits platelet aggregation.  Prostaglandins. 1976;  12 897-913
  • 20 Gryglewski R J. Prostaglandins and the mechanism of drug action in circulatory system.  Acta Biol Med Ger. 1976;  35 1097-1098
  • 21 Siegl A M, Smith J B, Silver M J. et al . Selective binding site for [3H]prostacyclin on platelets.  J Clin Invest. 1979;  63 215-220
  • 22 Cummings C J, Sessler C N, Beall L D. et al . Soluble E-selectin levels in sepsis and critical illness. Correlation with infection and hemodynamic dysfunction.  Am J Respir Crit Care Med. 1997;  156 431-437
  • 23 Ehrman M L, Jaffe E A. Prostacyclin (PGI2) inhibits the development in human platelets of ADP and arachidonic acid-induced shape change and procoagulant activity.  Prostaglandins. 1980;  20 1103-1116
  • 24 Weksler B B, Marcus A J, Jaffe E A. Synthesis of prostaglandin I2 (prostacyclin) by cultured human and bovine endothelial cells.  Proc Natl Acad Sci USA. 1977;  74 3922-3926
  • 25 Fujimoto T, Ohara S, Hawiger J. Thrombin-induced exposure and prostacyclin inhibition of the receptor for factor VIII/von Willebrand factor on human platelets.  J Clin Invest. 1982;  69 1212-1222
  • 26 Hawiger J, Parkinson S, Timmons S. Prostacyclin inhibits mobilisation of fibrinogen-binding sites on human ADP- and thrombin-treated platelets.  Nature. 1980;  283 195-197
  • 27 Bunting S, Simmons P M, Moncada S. Inhibition of platelet activation by prostacyclin: possible consequences in coagulation and anticoagulation.  Thromb Res. 1981;  21 89-102
  • 28 Schmid S G, Zweifach B W. RBC velocity profiles in arterioles and venules of the rabbit omentum.  Microvasc Res. 1975;  10 153-164
  • 29 Weiss H J, Turitto V T. Prostacyclin (prostaglandin I2, PGI2) inhibits platelet adhesion and thrombus formation on subendothelium.  Blood. 1979;  53 244-250
  • 30 Radomski M W, Palmer R M, Moncada S. Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets.  Br J Pharmacol. 1987;  92 181-187
  • 31 Orchard M A, Robinson C. Stability of prostacyclin in human plasma and whole blood: studies on the protective effect of albumin.  Thromb Haemost. 1981;  46 645-647
  • 32 Weksler B B, Ley C W, Jaffe E A. Stimulation of endothelial cell prostacyclin production by thrombin, trypsin, and the ionophore A 23187.  J Clin Invest. 1978;  62 923-930
  • 33 Hong S L. Effect of bradykinin and thrombin on prostacyclin synthesis in endothelial cells from calf and pig aorta and human umbilical cord vein.  Thromb Res. 1980;  18 787-795
  • 34 Morita I, Kanayasu T, Murota S. Kallikrein stimulates prostacyclin production in bovine vascular endothelial cells.  Biochim Biophys Acta. 1984;  792 304-309
  • 35 Rampart M, Bult H, Herman A G. Activated complement and anaphylatoxins increase the in vitro production of prostacyclin by rabbit aorta endothelium.  Naunyn Schmiedebergs Arch Pharmacol. 1983;  322 158-165
  • 36 Yoshida N, Weksler B, Nachman R. Purification of human platelet calcium-activated protease. Effect on platelet and endothelial function.  J Biol Chem. 1983;  258 7168-7174
  • 37 Marcus A J, Weksler B B, Jaffe E A, Broekman M J. Synthesis of prostacyclin from platelet-derived endoperoxides by cultured human endothelial cells.  J Clin Invest. 1980;  66 979-986
  • 38 Eisenhut T, Sinha B, Grottrup Wolfers E. et al . Prostacyclin analogs suppress the synthesis of tumor necrosis factor-alpha in LPS-stimulated human peripheral blood mononuclear cells.  Immunopharmacology. 1993;  26 259-264
  • 39 Crutchley D J, Conanan L B, Que B G. Effects of prostacyclin analogs on the synthesis of tissue factor, tumor necrosis factor-alpha and interleukin-1 beta in human monocytic THP-1 cells.  J Pharmacol Exp Ther. 1994;  271 446-451
  • 40 Matthias F R, Ditter H. The effects of an infusion of prostacyclin on their endotoxin shock in rabbits.  Folia Haematol Int Mag Klin Morphol Blutforsch. 1990;  117 209-218
  • 41 Okajima K, Uchiba M. The anti-inflammatory properties of antithrombin III: new therapeutic implications.  Semin Thromb Hemost. 1998;  24 27-32
  • 42 Pulletz S, Lehmann C h, Volk T h. et al . Influence of heparin and hirudin on endothelial binding of antithrombin in experimental thrombinemia.  Crit Care Med. 2000;  28 2881-2886
  • 43 Gray E, Souter P, Roemisch J, Poole S. Antithrombin inhibits in vitro lipopolysaccharide induced procoagulant activity and cytokine production.  Shock. 2000;  13 (Suppl) 579
  • 44 Stangl K, Dschietzig T, Alexiou K, Brunner F. Antithrombin increases pulmonary endothelins: inhibition by heparin and Ca2+ channel antagonism.  Eur J Pharmacol. 1999;  370 57-61
  • 45 Nawroth P P, Stern D M. Modulation of endothelial cell hemostatic properties by tumor necrosis factor.  J Exp Med. 1986;  163 740-745
  • 46 Osterud B, Rapaport S I. Activation of factor IX by the reaction product of tissue factor and factor VII: additional pathway for initiating blood coagulation.  Proc Natl Acad Sci USA. 1977;  74 5260-5264
  • 47 Zur M, Nemerson Y. Kinetics of factor IX activation via the extrinsic pathway. Dependence of Km on tissue factor.  J Biol Chem. 1980;  255 5703-5707
  • 48 Zillmann A, Luther T, Muller I. et al . Platelet-associated tissue factor contributes to the collagen-triggered activation of blood coagulation.  Bioch Biophys Res Comm. 2001;  281 603-609
  • 49 Baeuerle P A, Henkel T. Function and activation of NF-kappa B in the immune system.  Annu Rev Immunol. 1994;  12 141-179
  • 50 Bierhaus A, Zhang Y, Quehenberger P. et al . The dietary pigment curcumin reduces endothelial tissue factor gene expression by inhibiting binding of AP-1 to the DNA and activation of NF-kappa B.  Thromb Haemost. 1997;  77 772-782
  • 51 Böhrer H, Qiu F, Zimmermann T. et al . Role of Nf-kappa B in the mortality of sepsis.  J Clin Invest. 1997;  100 972-985
  • 52 Okajima K, Wang Y P, Okabe H. et al . Role of leucacytes in the activation of intravascular coagulation in patients with septicemia.  Am J Hematol. 1991;  36 265-271
  • 53 Lentz S R, Tsiang M, Sadler J E. Regulation of throm-bomodulin by tumor necrosis factor-alpha: comparison of transcriptional and posttranscriptional mechanisms.  Blood. 1991;  77 542-550
  • 54 Sakata Y, Curriden S, Lawrence D. et al . Activated protein C stimulates the fibrinolytic activity of cultured endothelial cells and decreases antiactivator activity.  Proc Natl Acad Sci USA. 1985;  82 1121-1125
  • 55 Emerson T E, Fournel M A, Leach W J, Redens T B. Protection against disseminated intravascular coagulation and death by antithrombin-III in the Escherichia coli endotoxemic rat.  Circ Shock. 1987;  21 1-13
  • 56 Bleeker W K, Agterberg J, Rigter G. et al . Protective effect of antithrombin III in acute experimental pancreatitis in rats.  Dig Dis Sci. 1992;  37 280-285
  • 57 Dickneite G, Paques E P. Reduction of mortality with antithrombin III in septicemic rats: a study of Klebsiella pneumoniae induced sepsis.  Thromb Haemost. 1993;  69 98-102
  • 58 Kessler C M, Tang Z, Jacobs H M, Szymanski L M. The suprapharmacologic dosing of antithrombin concentrate for Staphylococcus aureus-induced disseminated intravascular coagulation in guinea pigs: substantial reduction in mortality and morbidity.  Blood. 1997;  89 4393-4401
  • 59 Dickneite G, Leithauser B. Influence of antithrombin III on coagulation and inflammation in porcine septic shock.  Arterioscler Thromb Vasc Biol. 1999;  19 1566-1572
  • 60 Minnema M C, Chang A C, Jansen P M. et al . Recombinant human antithrombin III improves survival and attenuates inflammatory responses in baboons lethally challenged with Escherichia coli.  Blood. 2000;  95 1117-1123
  • 61 Taylor F-B J, Emerson-TE T-E J, Jordan R. et al . Antithrombin-III prevents the lethal effects of Escherichia coli infusion in baboons.  Circ Shock. 1988;  26 227-235
  • 62 Triantaphyllopoulos D C. Effects of human antithrombin III on mortality and blood coagulation induced in rabbits by endotoxin.  Thromb Haemost. 1984;  51 232-235
  • 63 Spannagl M, Hoffmann H, Siebeck M. et al . A purified antithrombin III-heparin complex as a potent inhibitor of thrombin in porcine endotoxin shock.  Thromb Res. 1991;  61 1-10
  • 64 Hermida J, Montes R, Munoz M C. et al . Effects of low molecular weight heparin, alone or combined with antithrombin III, on mortality, fibrin deposits and hemostatic parameters in endotoxin-induced disseminated intravascular coagulation in rabbits.  Am J Hematol. 1999;  60 6-11
  • 65 Mammen E F, Miyakawa T, Phillips T F. et al . Human antithrombin concentrates and experimental disseminated intravascular coagulation.  Semin Thromb Hemost. 1985;  11 373-383
  • 66 Hauptmann J, Bruggener E. Influence of hirudin on the consumption of antithrombin III in experimental DIC.  Folia Haematol Int Mag Klin Morphol Blutforsch. 1988;  115 83-87
  • 67 Gomez C, Paramo J A, Colucci M, Rocha E. Effect of heparin and/or antithrombin III on the generation of endotoxin-induced plasminogen activator inhibitor.  Thromb Haemost. 1989;  62 694-698
  • 68 Giebler R, Schmidt U, Koch S. et al . Combined antithrombin III and C1-esterase inhibitor treatment decreases intravascular fibrin deposition and attenuates cardiorespiratory impairment in rabbits exposed to Escherichia coli endotoxin.  Crit Care Med. 1999;  27 597-604
  • 69 Uchiba M, Okajima K, Murakami K. et al . Attenuation of endotoxin-induced pulmonary vascular injury by antithrombin III.  Am J Physiol. 1996;  270 L921-930
  • 70 Ronneberger H, Hein B. Wirkung von Antithrombin III auf experimentelle Intoxikationen mit Hepatotoxinen bei Hunden.  Arzneimittelforschung. 1984;  34 277-279
  • 71 Fujiwara K, Ogata I, Ohta Y. et al . Intravascular coagulation in acute liver failure in rats and its treatment with antithrombin III.  Gut. 1988;  29 1103-1108
  • 72 Uchiba M, Okajima K, Murakami K. et al . Effects of antithrombin III (AT III) and Trp49-modified AT III on plasma level of 6-keto-PGF1 alpha in rats.  Thromb Res. 1995;  80 201-208
  • 73 Harada N, Okajima K, Kushimoto S. et al . Antithrombin reduces ischemia/reperfusion injury of rat liver by increasing the hepatic level of prostacyclin.  Blood. 1999;  93 157-164
  • 74 Redens T B, Leach W J, Bogdanoff D A, Emerson-TE J. Synergistic protection from lung damage by combining antithrombin-III and alpha 1-proteinase inhibitor in the E. coli endotoxemic sheep pulmonary dysfunction model.  Circ Shock. 1988;  26 15-26
  • 75 Okada Y, Zuo X J, Marchevsky A M. et al . Antithrombin III treatment improves parameters of acute inflammation in a highly histoincompatible model of rat lung allograft rejection.  Transplantation. 1999;  67 526-528
  • 76 Ostrovsky L, Woodman R C, Payne D. et al . Antithrombin III prevents and rapidly reverses leukocyte recruitment in ischemia/reperfusion.  Circulation. 1997;  96 2302-2310
  • 77 Lechner K, Niessner H, Thaler E. Coagulation abnormalities in liver disease.  Semin Thromb Hemost. 1977;  4 40-56
  • 78 Knot E, ten-Cate J W, Drijfhout H R. et al . Antithrombin III metabolism in patients with liver disease.  J Clin Pathol. 1984;  37 523-530
  • 79 Tytgat G N, Collen D, Verstraete M. Metabolism of fibrinogen in cirrhosis of the liver.  J Clin Invest. 1971;  50 169-701
  • 80 Verstraete M, Vermylen J, Collen D. Intravascular coagulation in liver disease. Annu Rev Med Hauptbibl 1974 25
  • 81 Schipper H G, ten Cate J W. Antithrombin III transfusion in patients with hepatic cirrhosis.  Br J Haematol. 1982;  52 25-33
  • 82 Coleman M, Finlayson N, Bettigole R E. et al . Fibrinogen survival in cirrhosis: improvement by „low dose” heparin.  Ann Intern Med. 1975;  83 79-81
  • 83 Langley P G, Hughes R D, Forbes A. et al . Controlled trial of antithrombin III supplementation in fulminant hepatic failure.  J Hepatol. 1993;  17 326-331
  • 84 Buller H R, ten-Cate J W. Antithrombin III infusion in patients undergoing peritoneovenous shunt operation: failure in the prevention of disseminated intravascular coagulation.  Thromb Haemost. 1983;  49 128-131
  • 85 Shimada M, Matsumata T, Kamakura T. et al . Modulation of coagulation and fibrinolysis in hepatic resection: a randomized prospective control study using antithrombin III concentrates.  Thromb Res. 1994;  74 105-114
  • 86 Palareti G, Legnani C, Maccaferri M. et al . Coagulation and fibrinolysis in orthotopic liver transplantation: role of the recipient's disease and use of antithrombin III concentrates. S. Orsola Working Group on Liver Transplantation.  Haemostasis. 1991;  21 68-76
  • 87 Baudo F, DeGasperi A, deCataldo F. et al . Antithrombin III supplementation during orthotopic liver transplantation in cirrhotic patients: a randomized trial.  Thromb Res. 1992;  68 409-416
  • 88 Christophe J L, Rouget C, Roullier M. et al . Use of AT-III concentrate during liver transplantation.  Transplant Proc. 1991;  23 1942-1943
  • 89 Scherer R, Kabatnik M, Erhard J, Peters J. The influence of antithrombin III (AT III) substitution to supranormal activities on systemic procoagulant turnover in patients with end-stage chronic liver disease.  Intensive Care Med. 1997;  23 1150-1158
  • 90 Lechner K, Kyrle P A. Antithrombin III concentrates - are they clinically useful?.  Thromb Haemost. 1995;  73 340-348
  • 91 Blauhut B, Necek S, Vinazzer H, Bergmann H. Substitution therapy with an antithrombin III concentrate in shock and DIC.  Thromb Res. 1982;  27 271-278
  • 92 Hellgren M, Javelin L, Hagnevik K, Blomback M. Antithrombin III concentrate as adjuvant in DIC treatment. A pilot study in 9 severely ill patients.  Thromb Res. 1984;  35 459-466
  • 93 Blauhut B, Kramar H, Vinazzer H, Bergmann H. Substitution of antithrombin III in shock and DIC: a randomized study.  Thromb Res. 1985;  39 81-89
  • 94 Gugliotta L, D'Angelo A, Mattioli B M. et al . Hypercoagulability during L-asparaginase treatment: the effect of antithrombin III supplementation in vivo.  Br J Haematol. 1990;  74 465-470
  • 95 Harper P L, Williamson L, Park G. et al . A pilot study of antithrombin replacement in intensive care management: the effects on mortality, coagulation and renal function.  Transfus Med. 1991;  1 121-128
  • 96 Heinemann H, Schramm W, Hoffmann P, Lierz P. Multiorganversagen nach Gabe von PPSB beim isolierten Faktor VII-Mangel.  Anästh Intensivmed. 1993;  34 130-133
  • 97 Hesselvik J F, Blomback M, Brodin B, Maller R. Coagulation, fibrinolysis, and kallikrein systems in sepsis: relation to outcome.  Crit Care Med. 1989;  17 724-733
  • 98 Seitz R, Wolf M, Egbring R, Havemann K. The disturbance of hemostasis in septic shock: role of neutrophil elastase and thrombin, effects of antithrombin III and plasma substitution.  Eur J Haematol. 1989;  43 22-28
  • 99 Nowak G U, Groll A, Kreuz W D. et al . Behandlung der Verbrauchskoagulopathie mit Antithrombin III-Konzentrat bei Kindern mit nachgewiesener Sepsis.  Klin Padiatr. 1992;  204 134-140
  • 100 Eisele B, Lamy M, Thijs L G. et al . Antithrombin III in patients with severe sepsis. A randomized, placebo-controlled, double-blind multicenter trial plus a meta-analysis on all randomized, placebo-controlled, double-blind trials with antithrombin III in severe sepsis.  Intensive Care Med. 1998;  24 663-672
  • 101 Baudo F, Caimi T M, deCataldo F. et al . Antithrombin III (AT III) replacement therapy in patients with sepsis and/or postsurgical complications: A controlled double-blind, randomized, multicenter study.  Intensive Care Med. 1998;  24 336-342
  • 102 Fourrier F, Chopin C, Huart J J. et al . Double-blind, placebo-controlled trial of antithrombin III concentrates in septic shock with disseminated intravascular coagulation.  Chest. 1993;  104 882-888
  • 103 Inthorn D, Hoffmann J N, Hartl W H. et al . Antithrombin III supplementation in severe sepsis: beneficial effects on organ dysfunction.  Shock. 1997;  8 328-334
  • 104 Inthorn D, Hoffmann J N, Hartl W H. et al . Effect of antithrombin III supplementation on inflammatory response in patients with severe sepsis.  Shock. 1998;  10 90-96
  • 105 Buller H R, ten-Cate J W. Antithrombin III infusion in patients undergoing peritoneovenous shunt operation: failure in the prevention of disseminated intravascular coagulation.  Thromb Haemost. 1983;  49 28-131
  • 106 Langley P G, Keays R, Hughes R D. et al . Antithrombin III supplementation reduces heparin requirement and platelet loss during hemodialysis of patients with fulminant hepatic failure.  Hepatology. 1981;  14 251-256
  • 107 Eisele B, Lamy M, Thijs L G. et al . Antithrombin III in patients with severe sepsis. A randomized, placebo-controlled, double-blind multicenter trial plus a meta-analysis on all randomized, placebo-controlled, double-blind trials with antithrombin III in severe sepsis.  Intensive Care Med. 1988;  24 663-672

Prof. Dr. med. R. Scherer

Zentrale Abteilung für Anästhesiologie und Intensivmedizin
Evangelische und Johanniter Kliniken Duisburg/Dinslaken/ Oberhausen gGmbH

Fahrner Straße 133 - 135

47169 Duisburg

Email: ralf.scherer@ejk.de