Subscribe to RSS
DOI: 10.1055/s-2002-19750
A Ring Closing Metathesis-Based Approach to (±)-Herbertene, (±)-α-Herbertenol, (±)-β-Herbertenol and (±)-Herbertenediol
Publication History
Publication Date:
02 February 2007 (online)

Abstract
An efficient methodology for the synthesis of the aromatic sesquiterpenes (±)-herbertene, (±)-α-herbertenol, (±)-β-herbertenol (±)-herbertenediol and (±)-α-cuparenone, employing a combination of Claisen rearrangement and ring closing metathesis reactions, is described.
Key words
herbertane - aromatic sesquiterpenes - Claisen rearrangement - ring closing metathesis
-
1a
Irita H.Hashimoto T.Fukuyama Y.Asakawa Y. Phytochemistry 2000, 55: 247 -
1b
Matsuo A.Yuki S.Nakayama M. J. Chem. Soc., Perkin Trans. 1 1986, 701 - For the synthesis of (±)-herbertene, see:
-
2a
Chandrasekaran S.Turner JV. Tetrahedron Lett. 1982, 23: 3799 -
2b
Frater G. J. Chem. Soc., Chem. Commun. 1982, 521 -
2c
Leriverend M.-L.Vazeux M. J. Chem. Soc., Chem. Commun. 1982, 866 -
2d
Saha AK.Das S.Mukherjee D.Fronczek FR. Tetrahedron Lett. 1994, 35: 3353 -
2e
Mandelt K.Fitjer L. Synthesis 1998, 1523 -
2f
Poon T.Mundy BP.Favaloro FG.Goudreau CA.Greenberg A.Sullivan R. Synthesis 1998, 832 -
2g
Ho T.-L.Chang M.-H. J. Chem. Soc., Perkin Trans. 1 1999, 2479 - For enantioselective syntheses, see,
-
3a
Takano S.Moriya M.Ogasawara K. Tetrahedron Lett. 1992, 33: 329 -
3b
Tori M.Miyake T.Hamaguchi T.Sono M. Tetrahedron: Asymmetry 1997, 8: 2731 -
3c
Abad A.Agulló Cuñat AC.Perni RH. J. Org. Chem. 1999, 64: 1741 - For the synthesis of α-herbertenol, β-herbertenol and herbertenediol, see:
-
4a
Fukuyama Y.Kiriyama Y.Kodama M. Tetrahedron Lett. 1996, 37: 1261 -
4b
Eicher T.Servet F.Speicher A. Synthesis 1996, 863 -
4c
Harrowven DC.Hannam JC. Tetrahedron Lett. 1998, 39: 9573 -
4d
Harrowven DC.Hannam JC. Tetrahedron 1999, 55: 9333 -
4e
Pal A.Gupta PD.Roy A.Mukherjee D. Tetrahedron Lett. 1999, 40: 4733 -
4f
Degnan AP.Meyers AI. J. Am. Chem. Soc. 1999, 121: 2762 -
4g
Gupta PD.Pal A.Roy A.Mukherjee D. Tetrahedron Lett. 2000, 41: 7563 -
4h
Srikrishna A.Rao MS. Tetrahedron Lett. 2001, 42: 5781 -
4i
Bringmann G.Pabst T.Henschel P.Kraus J.Peters K.Peters EM.Rycroft DS.Connolly JD. J. Am. Chem. Soc. 2000, 122: 9127 -
4j
Abad A.Agullo C.Cunat AC.Jimenez D.Perni RH. Tetrahedron 2001, 57: 9727 -
4k
Srikrishna A.Rao MS. Tetrahedron Lett. 2002, 43: 151 -
5a
Grubbs RH.Chang S. Tetrahedron 1998, 54: 4413 -
5b
Fürstner A. Angew. Chem., Int. Ed. 2000, 39: 3013 -
5c
Trnka TM.Grubbs RH. Acc. Chem. Res. 2001, 34: 18 ; and references cited therein -
6a
Claisen L. Ber. 1912, 45: 3157 -
6b
Lutz RP. Chem. Rev. 1984, 84: 205 -
6c
Ziegler FE. Chem. Rev. 1988, 88: 1423 - 7 For isolation, see:
Dev S.Chetty GL. Tetrahedron Lett. 1964. p.73 - For synthesis: see,
-
8a
Meyers AI.Lefker BA. J. Org. Chem. 1986, 51: 1541 -
8b
Srikrishna A.Sundarababu G. Tetrahedron 1990, 46: 3601 -
8c
Kulkarni MG.Pendharkar S. Tetrahedron 1997, 53: 3167 : and references cited therein
References
Typical Procedure for Claisen Rearrangement: A solution of the cinnamyl alcohol 18a (300 mg, 1.85 mmol), ethyl vinyl ether (532 mg, 7.4 mmol) and a catalytic amount of mercury (II) acetate (≈ 50 mg) was heated to180 °C in a Carius tube under nitrogen atmosphere for 48 h. The reaction mixture was then cooled, diluted with ether, washed with aq. NaHCO3 solution and brine, and dried (Na2SO4). Evaporation of the solvent and purification of the product on a silica gel column using ethyl acetate-hexane (1:20) as eluent furnished the aldehyde 19a (226 mg, 65%) as an oil. Typical Procedure for RCM Rreaction: A solution of the dienol 20a (50 mg, 0.23 mmol) in CH2Cl2 (4 mL) was added to a solution of Grubbs" catalyst (15 mg, 8 mol%) in CH2Cl2 (4 mL) under nitrogen atmosphere and stirred for 4 h at room temperature. Evaporation of the solvent and purification of the residue on a silica gel column furnished the cyclopentenol 21a (42 mg, 97%) as a 1:1 diastereomeric mixture.
10All the compounds exhibited spectral data consistent with their structures. Yields refer to isolated and chromatographically pure compounds. Selected spectral data for the aldehyde 19a: IR (neat, cm-1): 2737, 1721, 1636, 1604, 919. 1H NMR (300 MHz, CDCl3 + CCl4): δ 9.55 (1 H, br s), 7.30-6.90 (4 H, m), 6.08 (1 H, dd, J = 17.4 and 10.5 Hz), 5.19 (1 H, d, J = 10.3 Hz), 5.10 (1 H, d, J = 17.4Hz.), 2.79 and 2.70 (2 H, 2 × d, J = 12.9 Hz.), 2.35 (3 H, s), 1.51 (3 H, s). 13C NMR (75 MHz, CDCl3 + CCl4): δ 201.9 (CH), 145.4 (C), 145.3 (CH), 138.0 (C), 128.5 (CH), 127.4 (CH), 127.1 (CH), 123.4 (CH), 113.0 (CH2), 53.3 (CH2), 42.9 (C), 26.2 (CH3), 21.8 (CH3). For a 1:1 diastereomeric mixture of the dienol 20a: IR (neat, cm-1): 3398, 1635, 917. 1H NMR (300 MHz, CDCl3 + CCl4): δ 7.24-6.90 (4 H, m), 6.20-6.00 (1 H, m), 5.85-5.75 (1 H, m), 5.15-4.95 (4 H, m), 4.13 (1 H, br s), 2.34 (3 H, s), 2.05-1.90 (2 H, m), 1.50 (1 H, br s), 1.48 and 1.46 (3 H, CH3). 13C NMR (75 MHz, CDCl3 + CCl4): δ 147.4 and 147.0 (CH), 146.9 (C), 142.1 and 142.0 (CH), 137.7 and 137.6 (C), 128.3 and 128.2 (CH), 127.4 and 127.3 (CH), 127.0 and 126.9 (CH), 123.8 and 123.7 (CH), 113.5 (CH2), 112.1 and 112.0 (CH2), 70.5 and 70.4 (CH), 48.4 (CH2), 43.8 (C), 25.8 and 25.6 (CH3), 21.8 (CH3). For a 1:1 diastereomeric mixture of the cyclopentenol 21a: IR (neat, cm-1): 3346, 1605. 1H NMR (300 MHz, CDCl3 + CCl4): δ 7.30-6.90 (4 H, m), 6.02 (1 H, d, J = 5.1Hz.), 5.88-5.80 (1 H, m), 4.90 (1 H, br s), 2.55-2.35 (1 H, m), 2.34 and 2.32 (3 H, s), 1.95-1.60 (2 H, m), 1.54 and 1.40 (3 H, s, CH3). 13C NMR (75 MHz, CDCl3 + CCl4): δ 149.2 and 148.6 (C), 143.1 and 142.6 (CH), 137.5 and 137.4 (C), 132.2 and 132.1 (CH), 128.2 and 128.1 (CH), 126.6 and 126.5 (CH), 126.4 and 126.3 (CH), 122.7 and 122.6 (CH), 77.2 (CH), 53.1 and 52.1 (C), 51.3 and 50.8 (CH2), 30.1 and 28.5 (CH3), 21.6 (CH3). For the cyclopentenone 22a: IR (neat, cm-1): 1716, 1586. 1H NMR (300 MHz, CDCl3 + CCl4): δ 7.65 (1 H, d, J = 5.7 Hz.), 7.20 (1 H, t, J = 7.5 Hz.), 7.10-6.95 (3 H, m), 6.19 (1 H, d, J = 5.7 Hz.), 2.63 and 2.51 (2 H, 2 × d, J = 18.7 Hz.), 2.35 (3 H, s), 1.63 (3 H, s). 13C NMR (75 MHz, CDCl3 + CCl4): δ 209.2 (C), 171.1 (CH), 145.2 (C), 138.3 (C), 131.6 (CH), 128.7 (CH), 127.6 (CH), 126.5 (CH), 122.7 (CH), 51.9 (CH2), 48.1 (C), 27.3 (CH3), 21.7 (CH3). For the cyclopentenone 23a: IR (neat, cm-1): 1712, 1606, 1594. 1H NMR (300 MHz, CDCl3 + CCl4): δ 7.73 (1 H, d, J = 5.7 Hz.), 7.19 (1 H, t, J = 7.6 Hz.), 7.10-6.90 (3 H, m), 6.20 (1 H, d, J = 5.7Hz.), 2.35 (3 H, s), 1.46 (3 H, s), 1.19 (3 H, s), 0.52 (3 H, s). 13C NMR (75 MHz, CDCl3 + CCl4): δ 213.8 (C), 168.2 (CH), 143.4 (C), 137.7 (C), 129.4 (CH), 128.3 (CH), 127.6 (2 C, CH), 124.0 (CH), 54.7 (C), 51.5 (C), 26.4 (CH3), 26.0 (CH3), 21.8 (CH3), 20.1 (CH3).
11Alternately, the aldehydes 19a-d were also obtained (65-70%) via the orthoester Claisen rearrangement [MeC(OEt)3; EtCOOH; Δ] of the alcohols 18a-d followed by conversion of the resultant esters into aldehydes by reduction (LAH)-oxidation (PCC) sequence.