Synlett 2002(2): 0280-0284
DOI: 10.1055/s-2002-19759
LETTER
© Georg Thieme Verlag Stuttgart · New York

Short and Versatile Two-Carbon Ring Expansion Reactions by Thermo-Isomerization: Novel Straightforward Synthesis of (±)-Muscone, Nor- and Homomuscones, and Further Macrocyclic Ketones

Matthias Nagel*a, Hans-Jürgen Hansena, Georg Fráterb
a Organisch-chemisches Institut der Universität, Winterthurerstr. 190, CH 8057- Zürich, Switzerland
Fax: +41(1)635 68 12; e-Mail: mnagel@access.unizh.ch;
b Givaudan Research Ltd, Überlandstr. 138, CH-8600 Dübendorf, Switzerland
Fax: +41(1)824 29 26; e-Mail: georg.frater@givaudan.com;
Further Information

Publication History

Received 3 September 2001
Publication Date:
02 February 2007 (online)

Abstract

Thermo-isomerization of 1-vinyl substituted medium- and large-ring cycloalkanol derivatives in a flow reactor system at temperatures of 600 °C to about 650 °C leads directly to the ring-expanded macrocyclic ketones. Alkyl substituents at the vinylic moiety are transferred locospecifically to the ring-expanded ketone as corresponding α-, and β-substituents, respectively. This novel thermal 1,3-C shift reaction therefore provides a new access to short syntheses of many alkyl-substituted macrocyclic ketone derivatives [e.g. (±)-muscone and analogues] in a systematic manner.

    References

  • 1 Nagel M. Hansen H.-J. Fráter G. Synlett  2002,  2✗5 
  • 4a Kaiser R. Lamparsky D. Helv. Chim. Acta  1978,  61:  2671 
  • 4b Müller E. Bauer M. Liebigs Ann. Chem.  1962,  654:  92 
  • 4c Saunier YM. Danion-Bougot R. Danion D. Carrié R. J. Chem. Res. (S)  1978,  436 
  • 4d McMurry JE. Miller DD. J. Am. Chem. Soc.  1983,  105:  1660 
  • 4e Satoh T. Itoh N. Gengyo K. Takada S. Asakawa N. Yamani Y. Yamakawa K. Tetrahedron  1994,  50:  11839 
  • 4f Clyne DS. Weiler L. Tetrahedron  1999,  55:  13659 
  • Isolated from the so-called Galbanum oleo-gum-resin of Ferula galbaniflua and Ferula rubicaulis: See ref. 4a and references therein. Macrolide 8a is described as distinctly musky, and 8b as woody, balsamic and slightly musky. For the synthesis of the two different smelling enantiomers of 8b, see:
  • 5a Kraft P. Tochtermann W. Liebigs Ann. Org. Bioorg. Chem.  1995,  1409 
  • 5b Kraft P. Tochtermann W. Liebigs Ann. Org. Bioorg. Chem.  1994,  1161 
  • 5c Noda Y. Kashin H. Heterocycles  1998,  48:  5 
  • 5d Bestmann HJ. Kellermann W. Synthesis  1994,  1257 
  • For further syntheses of 8a and 8b:
  • 6a

    See ref. [4e]

  • 6b Hinkamp L. Schäfer HJ. Wippich B. Luftmann H. Liebigs Ann. Chem.  1992,  559 
  • 6c Donaldson WA. Taylor BS. Tetrahedron Lett.  1985,  26:  4163 
  • 6d Sims RJ. Tischler SA. Weiler L. Tetrahedron Lett.  1983,  24:  253 
  • 6e Wassermann HH. Gambale RJ. Pulwer MJ. Tetrahedron  1981,  37:  4059 
  • 6f Voss G. Gerlach H. Helv. Chim. Acta  1983,  66:  2294 
  • 7 Taguchi H. Yamamoto H. Nozaki H. Tetrahedron Lett.  1976,  2617 
  • Selected characteristic spectroscopic data of
  • 8a

    3a: 1H NMR (300 MHz, CDCl3): 5.94 and 5.74 [br s, H2-C(1)], 1.86 [br s, Me-C(2)], 0.87 [t-type m, H3C(ω)]. 13C NMR (75 MHz, CDCl3): 202.3 [s, C(3)], 144.6 [s, C(2)], 124.1 [t, C(1)], 17.7 [q, Me-C(2)], 13.5 [q, C(ω)].

  • 8b

    5a: 1H NMR (300 MHz, CDCl3): 2.52 [t-type m, 2 H, H2-C(13)], 1.68-1.63 (m, 2 H), 1.54-1.49 (m, 2 H), 1.33-1.15 (m, 16 H), 1.12 [s, 6 H, Me2-C(2)]. 13C NMR (75 MHz, CDCl3): 216.0 (s), 47.84 (s), 40.83, 35.68, 26.96, 26.69, 26.63, 25.45, 25.26 (7 t), 24.70 (q, 2), 24.56, 24.48, 22.27, 21.86 (4 t).

  • 9 Casanova J. Waegell B. Bull. Soc. Chim. Fr.  1971,  1289 
  • For examples of analogous one-carbon insertion reactions by a semipinacol-type [1,2]C shift induced by electrophiles (Br+, Cl+), see (Scheme 5):
  • 10a Julia S. Julia M. Linarès H. Blondel J.-C. Bull. Soc. Chim. Fr.  1962,  1952 
  • 10b Johnson CR. Cheer CJ. Goldsmith DJ. J. Org. Chem.  1964,  29:  3320 
  • 10c Kartashov VR. Pushkarev VP. Tishkov KN. Bodrikov IV. J. Org. Chem. USSR (Engl Transl.)  1971,  7:  1638 
  • 10d Bodrikov IV. Kartashov VR. Temnikova TI. J. Org. Chem. USSR (Engl Transl.)  1968,  4:  1286 
  • 10e Bouget H. Bull. Soc. Chim. Fr.  1965,  2089 
  • Examples for the synthesis of geminal α,α-dialkylated cyclic ketones by one-carbon expansion reactions:
  • 11a Krief A. Laboureur JL. Tetrahedron Lett.  1987,  28:  1549 
  • 11b Krief A. Laboureur JL. J. Chem. Soc., Chem. Commun.  1986,  702 
  • See also: (c) Hesse M. Ring Enlargement in Organic Chemistry   VCH; Weinheim, Germany: 1991.  Chap. 2. p.5-37  ; and references therein
  • 12 For surface supported reactions on aluminium oxide see: Posner GH. Angew. Chem.   1978.  90:  p.527 
  • For leading references see:
  • 13a Hesse M. Ring Enlargement in Organic Chemistry   VCH; Weinheim, Germany: 1991. 
  • 13b Williams AS. Synthesis  1999,  1707 
  • 13c Fráter G. Bajgrowicz JA. Kraft P. Tetrahedron  1998,  54:  7633 
  • 13d Fráter G. Lamparsky D. In Perfumes: Art, Science and Technology   Müller PM. Lamparsky D. Elsevier; London, New York: 1991.  Chap. 20. p.533-555  
  • 13e Ohloff G. Riechstoffe und Geruchssinn. Die molekulare Welt der Düfte   Springer; Berlin: 1990.  Chap. 9. p.195-219  
  • 13f Mookherjee BD. Wilson RA. In Fragrance Chemistry: The Science of the Sense of Smell   Theimer ET. Academic Press; New York: 1982.  Chap. 12. p.433-494  
  • 13g Körber A. Bauer K. In Fragrance and Flavor Substances   Croteau R. D & PS; Pattensen, Germany: 1980.  Chap. 14. p.155-166  
  • Syntheses of muscone (7c):
  • 14a

    For leading references cf. ref. [13]

  • 14b Munro C. Palmer K. Perfum. Flavour.  2000,  25 : May/June 1-4; and references therein
  • 14c Alexakis A. Benheim C. Fournioux X. Heuvel A. v. d. Levêque J.-M. March S. Rosset S. Synlett  1999,  11:  1811 
  • 14d Kamat VP. Hagiware H. Suzuki T. Ando M. J. Chem. Soc., Perkin Trans. 1  1998,  2253 
  • 14e Nicolaou KC. Pator J. Winssinger N. Murphy F. J. Am. Chem. Soc.  1998,  120:  5132 
  • 14f Takahashi T. Machida K. Kido Y. Nagashima K. Ebata S. Doi T. Chem. Lett.  1997,  1291 ; and references therein
  • 14g Ballini R. Marcantoni E. Petrini M. Liebigs Ann.  1995,  1381 ; and references therein
  • 14h Porter NA. Lacher B. Chang VH. Magnin DR. J. Am. Chem. Soc.  1989,  111:  8309 
  • 14i Bienz S. Hesse M. Helv. Chim. Acta  1988,  71:  1704 ; and references therein
  • 14j Bienz S. Hesse M. Helv. Chim. Acta  1987,  70:  2146 
  • 14k Karpf M. Dreiding AS. Helv. Chim. Acta  1975,  58:  2409 
  • Syntheses of 3-methylcyclohexadecanone (7d):
  • 15a Weiper-Idelmann A. a. d. Kamen M. Schäfer HJ. Gockeln M. Acta Chem. Scand.  1998,  52:  672 
  • 15b Mash EA. Gregg TM. Baron JA. J. Org. Chem.  1997,  62:  8513 
  • 15c Tanaka K. Matsui J. Somemiya K. Suzuki H. Synlett  1994,  351 
  • 15d Mookherjee BD. Trenkle RW. Patel R. J. Org. Chem.  1971,  36:  3266 
  • Syntheses of 3-methylcyclotetradecanone (7b):
  • 16a Yoshii E. Kimoto S. Chem. Pharm. Bull.  1969,  17:  629 
  • 16b

    See ref. [14j]

  • 16c

    See ref. [14k]

  • Syntheses of 3-methylcyclotridecanone (7a):
  • 17a Schulte-Elte KH. Hauser A. Ohloff G. Helv. Chim. Acta  1979,  62:  2673 
  • 17b

    cf. ref. [14k]

  • 17c Hiyama T. Mishima T. Kitatani K. Nozaki H. Tetrahedron Lett.  1974,  3297 
  • For a survey:
  • 19a Hesse M. Ring Enlargement in Organic Chemistry   VCH; Weinheim, Germany: 1991.  Chap. 2. p.5-34  ; and references therein
  • 19b Smith PAS. Baer DR. Org. React.  1960,  11:  157-188  
  • 19c Kirchhof W. Stumpf W. Franke W. Liebigs Ann. Chem.  1965,  681:  32 
  • 19d Drotloff H. Rotter H. Emeis D. Moeller M. J. Am. Chem. Soc.  1987,  7797 
  • 20a Evans DA. Carroll GL. Truesdale LK. J. Org. Chem.  1974,  39:  914 
  • 20b Vincek WC. Aldrich CS. Borchardt RT. Grunewald GL. J. Med. Chem.  1981,  24:  7 
  • 20c Choudary BM. Narender N. Bhuma V. Synth. Commun.  1995,  25:  2829 
  • 20d

    Modification of the work-up procedure: To dissolve all the aminoalcohol during the washing procedure, the white granular precipitate was digested in a glass filter with hot t-BuOMe several times and finally with one portion of hot THF.

  • 21a Gabel G. Bull. Soc. Chim. Fr.  1934,  1006 
  • 21b Kerwin JF. Ullyot GE. Fuson RC. Zirkle CL. J. Am. Chem. Soc.  1947,  69:  2961 
  • 21c Bellau B. Conway TT. Doyle TW. Morris L. Verbestel W. Can. J. Chem.  1975,  53:  237 
  • 21d Kitani H. Kuroda T. Moriguchi A. Ao H. Hirayama F. Bioorg. Med. Chem. Lett.  1997,  7:  515 
  • 21e Reddy LR. Reddy MA. Bhanumathi N. Rao KR. Synlett  2000,  339 
  • 21f Tiffeneau M. Weill P. Tchoubar B. C. R. Acad. Sci.  1937,  205:  54 
  • 21g Tchoubar B. Bull. Soc. Chim. Fr.  1949,  164 
  • 21h Clark RD. Caroon JM. Repke DB. Strosberg AM. Bitter SM. J. Med. Chem.  1983,  26:  855 
  • 21i Caroon JM. Clark RD. Kluge AF. Lee C.-H. Strosberg AM. J. Med. Chem.  1983,  26:  1426 
  • 21j Chen Y.-L. Chan C.-K. Chang N.-C. J. Chin. Chem. Soc. (Taipei)  1998,  45:  649 
  • 22a Corey EJ. Chaykovsky M. J. Am. Chem. Soc.  1965,  87:  1353 
  • 22b Shibuya H. Tsujii S. Yamamoto Y. Miura H. Kitagawa I. Chem. Pharm. Bull.  1984,  32:  3417 
  • 22c Bouda H. Borredon ME. Delmas M. Gaset A. Synth. Commun.  1987,  17:  503 
  • 22d Blake AJ. Danks JP. Harrison A. Parsons S. Schooler P. J. Chem. Soc., Dalton Trans.  1998,  2335 
  • 22e Ng JS. Synth. Comm.  1990,  20:  1193 ; and references therein
  • 23 Toda F. Kanemoto K. Heterocycles  1997,  46:  185 
  • The mixture of the (E/Z)-isomers 17, and 21, respectively, was found already earlier to be difficult to separate, cf. ref.14k For 21 see also:
  • 25a Stoll M. Rouvé A. Helv. Chim. Acta  1947,  30:  2019 
  • 25b Ito Y. Saegusa T. J. Org. Chem.  1977,  42:  2326 
  • 25c

    Ref. [17a]

  • 25d Flieri HG. Scholz D. Stütz A. Monatsh. Chem.  1979,  110:  245 
  • 25e Torii S. Inokuchi T. Mizuguchi K. Yamazaki M. J. Org.Chem.  1979,  44:  2303 
  • 25f

    See ref. [19c]

  • 25g Tsuji J. Yamada T. Kaito M. Mandai T. Bull. Chem. Soc. Jpn.  1980,  53:  1417 
  • 25h Rautenstrauch V. Snowden RL. Linder SM. Helv. Chim. Acta  1990,  73:  896 
  • 25i

    See ref. [14b]

  • 26a Marson Ch. Walker AJ. Pickering J. Hobson AD. J. Org. Chem.  1993,  58:  5944 
  • 26b Adam W. Richter MJ. Synthesis  1994,  176 
  • 26c Brandsma L. Verkruijsse H. Preparative Polar Organometallic Chemistry 1   Springer; Berlin/Heidelberg: 1987.  p.50-51  
  • 27 McMurry JE. Miller DD. J. Am. Chem. Soc.  1983,  105:  1660 
  • 28 Satoh T. Masayuki I. Yamakawa K. Chem. Lett.  1987,  1949 
  • 29a Thies RW. Daruwala KP. J. Org. Chem.  1987,  52:  3798 ; and references therein
  • 29b Wilson SR. Misra RN. Georgiadis GM. J. Org. Chem.  1980,  45:  2460 
2

For a description of the thermo-izomerization procedure and the experimental setup, see ref. [1] and references therein.

3

All mentioned cycloalkanols were synthesized by addition of the corresponding commercially available vinylic halides (normally the bromide) to the ketone by using a Grignard reaction. The yields could be improved significantly by pre-complexation of the ketone with CeCl3, according to the analogous procedure described in ref. 1 for the simple 1-vinylcycloalkanols. The propynyl substituted alcohol derivatives 16 and 20 were obtained in a similar manner by addition of propynyl magnesium bromide to the parent ketone. The 1-cyclohexen-1-yl-cyclododecanol 28 was obtained via addition of the lithio cyclohexenyl intermediate according to ref. [27]

18

Selected characteristic data of enones 8: 1H NMR (300 MHz, CDCl3): (E)-8a: 6.84 [dq, J = 15.5, 7 Hz, H-C(2)], 6.12 [dq, J = 15.5, 1.7 Hz, H-C(3)], 1.87 (dd, J = 7, 1.5 Hz). (Z)-8a: 6.19 [m, 2 H, H-C(2,3)], 2.11 (d, J = 7 Hz). 13C NMR (75 MHz, CDCl3): 200.4 [s, C(4)], (E)-8a: 141.9 [d, C(2)], 131.9 [d, C(3)], 18.0 [q, C(1)]. (Z)-8a: 142.2 [d, C(2)], 127.6 [d, C(3)], 15.9 [q, C(1)].

24

Cyclododecanone (12, 60 g, 0.33 mol) was melted by keeping it at 65-70 °C, then t-BuOH (15 mL) and trimethyl sulfoxonium iodide (117 g, 0.52 mol, 1.6 mol equiv.) were added with stirring. The resulting pulpy suspension was kept at 70 °C and potassium t-butoxide (56 g, 0.5 mol) were added in several portions. After an induction period of several minutes the insoluble precipitates slowly dissolved, due to the formation of equimolar amounts of DMSO during the spiroepoxide formation. After stirring for 1.5 h, powdered KOH (2 g) was added to the mixture. The course of the reaction was then followed by GC (conversion up to 95%). When further addition of KOH resulted in no additional epoxide formation, the mixture was allowed to cool to r.t. and water (100 mL) was added slowly with stirring. The mixture was diluted with t-BuOMe and then washed several times with water and brine. The organic layer was dried on MgSO4 and the solvent removed. After bulb-to-bulb distillation, oxirane 15 was obtained as a colorless oil (61 g, containing 5-10% 12) and was used for the transformation into 14 without further purification.