References
1a
Frauenrath H. In
Methods of Organic Chemistry (Houben-Weyl), Stereoselective Synthesis
Vol. E21d:
Helmchen G.
Hoffmann RW.
Mulzer J.
Schaumann E.
Thieme;
Stuttgart:
1995.
p.3301-3756 ; and reference cited therein
1b
Felix D.
Gschwendt-Steen K.
Wick AE.
Eschenmoser A.
Helv. Chim. Acta
1969,
52:
1030
2a
Salomon RG.
Raychaudhuri SR.
J. Org. Chem.
1984,
49:
3659
2b
Welch JT.
Eswarakrishnan S.
J. Org. Chem.
1985,
50:
5909
3
Martin R.
Romea P.
Tey C.
Urpi F.
Vilarrasa J.
Synlett
1997,
1414
4
Bruzzese T.
Cedro A.
Dell"Acqua E.
Di Nardo A.
Goi A.
Il Farmaco-Ed. Sc.
1986,
41:
196
5
Meerwein H.
Borner P.
Fuchs O.
Sasse H.-J.
Schrodt H.
Spille J.
Chem. Ber.
1956,
89:
2060
6a
Boehme H.
Soldan F.
Chem. Ber.
1961,
94:
3109
6b
Baganz H.
Domaschke L.
Chem. Ber.
1962,
95:
2095
6c Adding to the usefulness of our procedure, 5 is commercially available (TCI America).
7 Representative Procedure, Morpholine Amide 4f: A round-bottomed flask was charged with 8 mL morpholine (80 mmol) and dimethylacetamide dimethyl acetal (3.8 mL, 30 mmol) and the mixture was slowly heated to 190 °C over 5 hours under a steady stream of N2. After cooling to room temperature, xylenes (10 mL) and 2,4-dimethyl-penta-2,4-dien-1-ol (1.32 g, 11.7 mmol) were added and the reaction mixture was refluxed until the allylic alcohol was consumed (14 hours) as determined by TLC (30% hexanes in ethylacetate, v/v). The solvent was partially removed using a rotary evaporator. The residue was purified by column chromatography (hexanes → ethyl acetate:hexanes = 1:1) to afford the pure product as a colorless oil (1.95 g, 8.74 mmol, 74.3%). 1H NMR (500 MHz, CDCl3) δ 4.84 (s, 2 H), 4.73 (s, 2 H), 3.63 (m, 6 H), 3.47 (m, 2 H), 3.21 (t, J = 9 Hz, 1 H), 2.54 (d, J = 9 Hz, 2 H), 1.66 (s, 6 H). 13C NMR (125MHz, CDCl3) δ 170.3, 145.5, 111.2, 66.9, 66.7, 49.9, 46.1, 42.0, 34.6, 20.8. IR(neat) 3077, 2966, 2855, 1650, 1643, 1432, 1271, 1234, 1115, 1034 cm-1. MS (EI) m/z 223(23), 129(42), 114(42), 109(17), 95(100). HRMS (EI) m/z calcd for C13H21NO2: 223.1572, found: 223.1570.
8
Bolton IJ.
Harrison RG.
Lythgoe B.
J. Chem. Soc. C
1971,
2950
9 Details of the crystal structure determination (deposition number CCDC 165896) may be obtained from: The Director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1 EZ, UK.
10
Arduengo JAI.
Davidson F.
Dias HVR.
Goerlich JR.
Khasnis D.
Marshall WJ.
Prakasha TK.
J. Am. Chem. Soc.
1997,
119:
12742
11 An analogous reaction involving Z-2-hexenol(4b) gave a 13:1 mixture of diastereomers. Their relative configurations, however, were not assigned.
12
Yoon TP.
Dong YM.
MacMillan DWC.
J. Am. Chem. Soc.
1999,
121:
9726
13
Welch JT.
Eswarakrishnan S.
J. Am. Chem. Soc.
1987,
109:
6716
14
Brady SF.
Singh MP.
Janso JE.
Clardy J.
J. Am. Chem. Soc.
2000,
122:
2116
15
Zaluski M.-C.
Robba M.
Bonhomme M.
Bull. Soc. Chim. Fr.
1970,
1838
16 Yields were much higher (70%) when the corresponding Weinreb amide was used.
17
Scholl M.
Ding S.
Lee CW.
Grubbs RH.
Org. Lett.
1999,
1:
953
18 For a review of asymmetric intramolecular Heck-reactions, see: (a) Donde Y.
Overman LE. In
Catalytic Asymmetric Synthesis
2nd ed.:
Ojima I.
Wiley;
New York:
2000.
p.675-697
18 For a review of asymmetric RCM reactions, see: (b) Hoveyda AH.
Schrock RR.
Chem.-Eur. J.
2001,
7:
945