Subscribe to RSS
DOI: 10.1055/s-2002-25340
Microbial Baeyer-Villiger Oxidation of Bicyclo[4.3.0]ketones by Two Recombinant E. coli Strains. A Novel Access to Indole Alkaloids
Publication History
Publication Date:
07 February 2007 (online)
Abstract
Recombinant Escherichia coli overexpressing Pseudomonas sp. NCIMB 9872 cyclopentanone monooxygenase (CPMO; E.C. 1.14.13.16) and Acinetobacter sp. NCIMB 9871 cyclohexanone monooxygenase (CHMO; E.C. 1.14.13.22) have been utilized in whole-cell biotransformations of prochiral bicyclo[4.3.0]ketones. The lactones produced in a biocatalytic Baeyer-Villiger oxidation represent key intermediates for the synthesis of several indole alkaloids. The two over-expression systems demonstrated a tendency for the formation of opposite enantiomers with CPMO giving (+)-lactones in good yields and excellent enantiomeric excess.
Key words
biocatalysis - recombinant whole-cell biotransformation - monooxygenase - Baeyer-Villiger oxidation - indole alkaloids - enantioselectivity
- 1
Krow GR. Org. React. 1993, 43: 251 - 2
Walsh CT.Chen Y.-CJ. Angew. Chem. 1988, 100: 342 - 3
Willetts A. Trends Biotechnol. 1997, 15: 55 - 4
Roberts SM. J. Mol. Catal. B: Enzym. 1998, 4: 111 - 5
Stewart JD. Curr. Org. Chem. 1998, 2: 195 -
6a
Kelly DR. Chim. Oggi 2000, 18: 33 -
6b
Kelly DR. Chim. Oggi 2000, 18: 52 - 7
Bolm C.Schlingloff G.Weickhardt K. Angew. Chem., Int. Ed. Engl. 1994, 33: 1848 - 8
Gusso A.Baccin C.Pinna F.Strukul G. Organometallics 1994, 13: 3442 - 9
Bolm C.Schlingloff G. J. Chem. Soc., Chem. Commun. 1995, 1247 - 10
Bolm C.Schlingloff G.Bienewald F. J. Mol. Catal. A: Chemical 1997, 117: 347 - 11
Bolm C.Luong TKK.Schlingloff G. Synlett 1998, 1151 - 12
Strukul G.Varagnolo A.Pinna F. J. Mol. Catal. A: Chemical 1997, 117: 413 - 13
Bolm C.Beckmann O.Kühn T.Palazzi C.Adam W.Rao PB.Saha-Möller CR. Tetrahedron: Asymmetry 2001, 12: 2441 - 14
Uchida T.Katsuki T. Tetrahedron Lett. 2001, 42: 6911 - 15
Vogel M.Scharz-Linek U. Bioorg. Chem. 1999, 102 - 16
Schwarz-Linek U.Krödel A.Ludwig F.-A.Schulze A.Rissom S.Kragl U.Tishkov VI.Vogel M. Synthesis 2001, 947 - 17
Donoghue NA.Norris DB.Trudgill PW. Eur. J. Biochem. 1976, 63: 175 - 18
Kayser M.Chen G.Stewart J. Synlett 1999, 153 - 19
Chen G.Kayser MM.Mihovilovic MD.Mrstik ME.Martinez CA.Stewart JD. New J. Chem. 1999, 23: 827 - 20
Griffin M.Trudgill PW. Biochem. J. 1972, 129: 595 - 21
Griffin M.Trudgill PW. Eur. J. Biochem. 1976, 63: 199 - 22
Trudgill PW. Methods Enzymol. 1990, 188: 77 - 23
Bes MT.Villa R.Roberts SM.Wan PWH.Willetts AJ. J. Mol. Catal. B: Enzym. 1996, 1: 127 - 24
Adger B.Bes MT.Grogan G.McCague R.Pedragosa-Moreau S.Roberts SM.Villa R.Wan PWH.Willetts AJ. Bioorg. Med. Chem. 1997, 5: 253 - 26
Mihovilovic MD.Chen G.Wang S.Kyte B.Rochon F.Kayser MM.Stewart JD. J. Org. Chem. 2001, 66: 733 - 27
Mihovilovic MD.Müller B.Kayser MM.Stewart JD.Fröhlich J.Stanetty P.Spreitzer H. J. Mol. Catal. B: Enzym. 2001, 11: 349 - 28 For an alternative E. coli expression system for CHMO see:
Doig SD.O’Sullivan LM.Patel S.Ward JM.Woodley JM. Enzyme Microb. Technol. 2001, 28: 265 - 29 Application of the above system for whole-cell biotransformations:
Simpson HD.Alphand V.Furstoss R. J. Mol. Catal. B: Enzym. 2001, 16: 101 - 30
Riva R.Banfi L.Danieli B.Guanti G.Lesma G.Palmisano G. J. Chem. Soc., Chem. Commun. 1987, 299 - 31
Hieble JP.Nichols AJ.Langer SZ.Ruffolo RR. In Principles of PharmacologyMunson PL. Chapman and Hall; New York: 1996. p.135 - 32
Szántay C.Honzy K. Chem. Heterocycl. Compd. 1994, 25 (Suppl.): 161 - 33
Danieli B.Lesma G.Mauro M.Palmisano G.Passerella D. Tetrahedron 1994, 50: 8837 - 34
Johns SR.Lamberton JA.Occolowitz JL. J. Chem. Soc., Chem. Commun. 1967, 229 - 35
Krawczyk AR.Jones JB. J. Org. Chem. 1989, 54: 1795 - 36
Mundy BP.Theodore JJ. J. Am. Chem. Soc. 1980, 102: 2005 - 37
Aube J.Gosh S.Tanol M. J. Am. Chem. Soc. 1994, 116: 9009 - 38
Barret AGM.Boys ML.Boehm TL. J. Org. Chem. 1996, 61: 685 - 39
Bar R. Trends Biotechnol. 1989, 7: 2 - 40
Miyafuji A.Ito K.Katsuki T. Heterocycles 2000, 52: 261
References
Iwaki, H.; Hasegawa, Y.; Lau, P. C. K.; Wang, S.; Kayser, M. M. submitted to Appl. Environ. Microbiol.
41Physical and spectroscopic data of lactones 2:
(4a
R
,8a
R
)-1,4,4a,5,8,8a-Hexahydro-3
H
-2-benzopyran-3-one(2a). Colorless oil; [α]D
20 = +24.5 (c 1.0, CHCl3); ee >99% (chiral phase GC); 1H NMR (200 MHz, CDCl3): δ = 1.80-2.13 (m, 2 H), 2.16-2.44 (m, 4 H), 2.50-2.60 (m, 2 H), 4.22-4.40 (m, 2 H), 5.67 (br s, 2 H); 13C NMR (50 MHz, CDCl3): δ = 24.0 (t), 28.4 (t), 28.5 (d), 29.6 (d), 33.7 (t), 72.1 (t), 124.1 (d), 124.6 (d), 170.6 (s).
(4a
R
,8a
R
)
-
Octahydro-3
H
-2-benzopyran-3-one(2b). Colorless oil; [α]D
20 = +39.1 (c 1.0, CHCl3); ee = 99% (chiral phase GC); 1H NMR (200 MHz, CDCl3): δ = 1.22-1.63 (m, 8 H), 1.83-2.01 (m, 1 H), 2.05-2.25 (m, 1 H), 2.40-2.55 (m, 2 H), 4.25 (d, 2 H, J = 8 Hz); 13C NMR (50 MHz, CDCl3): δ = 21.5 (t), 23.3 (t), 24.6 (t), 28.6 (t), 31.0 (d), 32.7 (d), 32.8 (t), 72.4 (t), 171.1 (s).