Subscribe to RSS
DOI: 10.1055/s-2002-25341
Whole-cell Mediated Baeyer-Villiger Oxidation of Functionalized Bicyclo[3.3.0]ketones by Recombinant E. coli
Publication History
Publication Date:
07 February 2007 (online)

Abstract
Recombinant whole cells of Escherichia coli overexpressing Acinetobacter sp. NCIMB 9871 cyclohexanone monooxygenase (E.C. 1.14.13.22) have been utilized for the Baeyer-Villiger oxidation of functionalized bicyclo[3.3.0]ketones. Prochiral substrates were designed to probe the impact of polarity and spatial configuration of the functional groups on conversion and enantioselectivity. The data give additional insight into the steric requirements of the active site of the enzyme for high optical purity. The synthetic utility of the engineered E. coli strain is demonstrated and contributions to the non-natural substrate profile available so far are provided.
Key words
biocatalysis - recombinant whole-cell biotransformation - cyclohexanone monooxygenase - Baeyer-Villiger oxidation - substrate profiling - enantioselectivity
- 1
Krow GR. Org. React. 1993, 43: 251 - 2
Bolm C.Schlingloff G.Weickhardt K. Ang. Chem., Int. Ed. Engl. 1994, 33: 1848 - 3
Gusso A.Baccin C.Pinna F.Strukul G. Organometallics 1994, 13: 3442 - 4
Bolm C.Schlingloff G. J. Chem. Soc., Chem. Commun. 1995, 1247 - 5
Bolm C.Schlingloff G.Bienewald F. J. Mol. Catal. A: Chemical 1997, 117: 347 - 6
Bolm C.Luong TKK.Schlingloff G. Synlett 1998, 1151 - 7
Strukul G.Varagnolo A.Pinna F. J. Mol. Catal. A: Chemical 1997, 117: 413 - 8
Bolm C.Beckmann O.Kühn T.Palazzi C.Adam W.Rao PB.Saha-Möller CR. Tetrahedron: Asymmetry 2001, 12: 2441 - 9
Uchida T.Katsuki T. Tetrahedron Lett. 2001, 42: 6911 - 10
Walsh CT.Chen Y.-CJ. Angew. Chem. 1988, 100: 342 - 11
Willetts A. Trends Biotechnol. 1997, 15: 55 - 12
Roberts SM. J. Mol. Catal. B: Enzym. 1998, 4: 111 - 13
Stewart JD. Curr. Org. Chem. 1998, 2: 195 -
14a
Kelly DR. Chim. Oggi 2000, 18: 33 -
14b
Kelly DR. Chim. Oggi 2000, 18: 52 - 15
Trudgill PW. In Microbial Degradation of Organic Compounds Vol. 13:Gibson DT. Marcel Dekker; New York: 1984. p.131 - 16
Donoghue NA.Norris DB.Trudgill PW. Eur. J. Biochem. 1976, 63: 175 - 17
Taschner MJ.Black DJ. J. Am. Chem. Soc. 1988, 110: 6892 - 18
Alphand V.Archelas A.Furstoss R. Tetrahedron Lett. 1989, 30: 3663 - 19
Levitt MS.Newton RF.Roberts SM.Willetts AJ. J. Chem. Soc., Chem. Commun. 1990, 619 - 20
Taschner MJ.Peddada L. J. Chem. Soc., Chem. Commun. 1992, 1384 - 21
Furstoss R.Petit F. Tetrahedron: Asymmetry 1993, 4: 1341 - 22
Gagnon R.Grogan G.Levitt MS.Roberts SM.Wan PWH.Willetts AJ. J. Chem. Soc., Perkin Trans. 1 1994, 2537 - 23
Adger B.Bes MT.Grogan G.McCague R.Pedragosa-Moreau S.Roberts SM.Villa R.Wan PWH.Willetts AJ. J. Chem. Soc., Chem. Commun. 1995, 1563 - 24
Petit F.Furstoss R. Synthesis 1995, 1517 - 25
Lebreton J.Alphand V.Furstoss R. Tetrahedron Lett. 1996, 37: 1011 - 26
Wong C.-H.Whitesides GM. J. Am. Chem. Soc. 1981, 103: 4890 - 27
Tishkov VI.Galkin AG.Marchenko GN.Tsyganokov YD.Egorov HM. Biotechnol. Appl. Biochem. 1993, 18: 201 - 28
Seelbach K.Riebel B.Hummel W.Kula M.-R.Tishkov VI.Egorov HM.Wandrey C.Kragl U. Tetrahedron Lett. 1996, 37: 1377 - 29
Vogel M.Scharz-Linek U. Bioorg. Chem. 1999, 102 - 30
Schwarz-Linek U.Krödel A.Ludwig F.-A.Schulze A.Rissom S.Kragl U.Tishkov VI.Vogel M. Synthesis 2001, 947 - 31
Kayser M.Chen G.Stewart J. Synlett 1999, 153 - 32
Chen G.Kayser MM.Mihovilovic MD.Mrstik ME.Martinez CA.Stewart JD. New J. Chem. 1999, 23: 827 - 33
Mihovilovic MD.Chen G.Wang S.Kyte B.Rochon F.Kayser MM.Stewart JD. J. Org. Chem. 2001, 66: 733 - 34
Mihovilovic MD.Müller B.Kayser MM.Stewart JD.Fröhlich J.Stanetty P.Spreitzer H. J. Mol. Catal. B: Enzym. 2001, 11: 349 - 35 For an alternative E. coli expression system for CHMO see:
Doig SD.O’Sullivan LM.Patel S.Ward JM.Woodley JM. Enzyme Microbiol. Technol. 2001, 28: 265 - 36 Application of the above system for whole-cell biotransformations:
Simpson HD.Alphand V.Furstoss R. J. Mol. Catal. B: Enzym. 2001, 16: 101 - 37
Izawa H.Shirai R.Kawasaki H.Kim H.-D.Koga K. Tetrahedron Lett. 1989, 30: 7221 ; and references therein - 38
Leonard J.Ouali D.Rahman SK. Tetrahedron Lett. 1990, 31: 739 - 39
Zanoni G.Agnelli F.Meriggi A.Vidari G. Tetrahedron: Asymmetry 2001, 12: 1779 - 40
Piers E.Karunaratne V. Can. J. Chem. 1987, 67: 160 - 41
Huffman JW.Cooper MM.Miburo BB.Pennington WT. Tetrahedron 1992, 38: 8213 - 42
Lok R.Coward JK. J. Org. Chem. 1974, 39: 2377 - 43
Pak-Tsun H.Davies N. J. Org. Chem. 1984, 49: 3027 - 44
Bose AK.Lal B. Tetrahedron Lett. 1973, 40: 3937 - 45
Chen Y.Xiong Z.Zhou G.Yang J.Li Y. Chem. Lett. 1997, 1289 - 46
Studier FW.Moffatt BA. J. Mol. Biol. 1986, 189: 113 - 47
Bar R. Trends Biotechnol. 1989, 7: 2 -
48a
Mihovilovic MD.Müller B.Kayser MM.Stanetty P. Synlett 2002, 700 -
48b
Biotransformation of a precursor for the total synthesis of indole alkaloids with the CHMO expression system gave preferred formation of the (-)-4aS,8aS lactone based on the sign of specific rotation.
References
Physical and spectroscopic data of lactones 2:
4a
S-cis
-Hexahydro-cyclopenta[
c
]pyran-3(1
H
)-one(2a). Colorless oil; 1H NMR (200 MHz, CDCl3): δ = 1.20-2.08 (m, 6 H), 2.25-2.69 (m, 4 H), 4.00 (dd, J = 7 Hz, J = 20 Hz, 1 H), 4.37 (dd, J = 7 Hz, J = 20 Hz, 1 H); 13C NMR (50 MHz, CDCl3): δ = 25.0 (t), 28.9 (t), 34.2 (t), 34.3 (t), 34.4 (d), 36.3 (d), 67.4 (t), 173.4 (s).
4a
S-
(4aα,6β,7aα)-Hexahydro-6-methoxy-cyclopenta [
c
]pyran-3(1
H
)-one(2b). Colorless oil; 1H NMR (400 MHz, CDCl3): δ = 1.50-1.65 (m, 2 H), 1.82-2.10 (m, 2 H),
2.40-2.65 (m, 4 H), 3.23 (s, 3 H), 3.72-3.83 (m, 1 H, H6), 4.08 (dd, J = 14 Hz, J = 7 Hz, 1 H), 4.31 (dd, J = 14 Hz, J = 7 Hz, 1 H); 13C NMR (100 MHz, CDCl3): δ = 32.8 (d), 33.8 (t), 34.9 (t), 35.2 (d), 38.0 (t), 56.4 (q), 69.9 (t), 82.3 (d), 173.8 (s).
4a
S-
(4aα,6α,7aα)-Hexahydro-6-methoxy-cyclopenta [
c
]pyran-3(1
H
)-one(2c). Colorless oil; 1H NMR (400 MHz, CDCl3): δ = 1.24-1.44 (m, 1 H), 1.52-1.68 (m, 1 H),
2.00-2.90 (m, 6 H), 3.29 (s, 3 H), 3.80-3.92 (m, 1 H), 4.10 (dd, J = 14 Hz, J = 7 Hz, 1 H), 4.35 (dd, J = 14 Hz, J = 7 Hz, 1 H); 13C NMR (100 MHz, CDCl3): δ = 32.1 (d), 34.1 (t), 34.2 (t), 34.4 (d), 38.4 (t), 55.7 (q), 69.7 (t), 81.4 (d), 173.6 (s).
4a
R-
(4aα,6β,7aα)-6-Chloro-hexahydro-cyclopenta [
c
]pyran-3(1
H
)-one(2d). Colorless crystals, mp 90-92 °C; 1H NMR (400 MHz, CDCl3): δ = 1.58-1.68 (m, 1 H),
1.70-1.81 (m, 1 H), 2.30-2.70 (m, 6 H), 4.05-4.15 (m, 1 H), 4.20-4.30 (m, 2 H); 13C NMR (100 MHz, CDCl3): δ = 32.8 (d), 34.2 (t), 35.1 (d), 38.8 (t), 43.1 (t), 56.6 (d), 69.2 (t), 172.7 (s).
4a
R-
(4aα,6α,7aα)-6-Chloro-hexahydro-cyclopenta [
c
]pyran-3(1
H
)-one(2e). Colorless crystals, mp 88-90 °C; 1H NMR (400 MHz, CDCl3): δ = 1.60-1.80 (m, 1 H), 1.92-2.10 (m, 1 H), 2.20-2.50 (m, 3 H), 2.65-3.20 (m, 3 H), 4.10 (dd, J = 14 Hz, J = 7 Hz, 1 H), 4.45-4.55 (m, 1 H); 13C NMR (100 MHz, CDCl3): δ = 32.2 (d), 33.7 (t), 34.5 (d), 39.5 (t), 43.5 (t), 61.4 (d), 69.1 (t), 172.8 (s).