Subscribe to RSS
DOI: 10.1055/s-2002-25367
Mechanistic Evidence for a Novel Rearrangement Sequence in the Synthesis of 4-Aryl-5,6-dihydro-1,2-oxathiine-2,2-dioxides from Homopropargyl
Benzosulfonates
Publication History
Publication Date:
07 February 2007 (online)

Abstract
Under similar literature conditions, tributyltin hydride-promoted free radical reaction of homopropargyl benzosulfonates 1 initiated a novel rearrangement sequence and led to formation of two kinds of cyclic sultones: 4-aryl-5,6-dihydro-1,2-oxathiin-2,2-dioxides 2 and 4-aryl-3-tributyltin-1,2-oxathiane-2,2-dioxides 7. Isolation and X-ray structure characterization of previously unreported cyclic α-tributyltin sultones 7 provided evidence for a cyclization-fragmentation-cyclization mechanism proposed by Motherwell.
Key words
4-aryl-5,6-dihydro-1,2-oxathiin-2,2-dioxides - 4-aryl-3-tributyltin-1,2-oxathiane-2,2-dioxides - α,β-unsaturated sultones - ipso substitutions - free radicals
-
2a
Beckwith ALJ.Ingold KU. In Rearrangement in Ground and Excited Statesde Mayo P. Academic Press; New York: 1980. p.170 -
2b
Freidlina RKh.Terent’ev AB. In Advanced in Free Radical ChemistryWilliams GH. Heyden & Son; London: 1980. p.32 - 3
Studer A.Bossart M. In Radicals in Organic Synthesis Vol. 2:Renaud P.Sibi MP. Wiley-VCH; Weinheim: 2001. p.62 - Some representative references on intramolecular homolytic ipso substitutions:
-
4a
Ryokawa A.Togo H. Tetrahedron 2001, 57: 5915 -
4b
Leardini R.McNab H.Minozzi M.Nanni D. J. Chem. Soc. Perkin Trans 1 2001, 1072 -
4c
Amrein S.Bossart M.Vasella T.Studer A. J. Org. Chem. 2000, 65: 4281 -
4d
Bonfand E.Forslund L.Motherwell WB.Vazquez S. Synlett 2000, 475 -
4e
Caddick S.Shering CL.Wadman SN. Tetrahedron 2000, 56: 465 -
4f
Miranda LD.Cruz-Almanza R.Alvarez-Garcia A.Muchowski JM. Tetrahedron Lett. 2000, 41: 631 -
4g
Clive DL.Kang S. Tetrahedron Lett. 2000, 41: 1315 -
4h
Wakabayashi K.Yorimitsu H.Shinokubo H.Oshima K. Org. Lett. 2000, 2: 1899 -
4i
Clark AJ.De Campo F.Deeth RJ.Filik RP.Gatard S.Hunt NA.Lastecoueres D.Thomas GH.Verlhac J.-B.Wongtap H. J. Chem. Soc. Perkin Trans 1 2000, 671 -
4j
Senboku H.Hasegawa H.Orito K.Tokuda M. Tetrahedron Lett. 2000, 41: 5699 -
4k
Bowman WR.Mann E.Parr J. J. Chem. Soc. Perkin Trans 1 2000, 2991 -
4l
Alcaide B.Rodriguez-Vicente A. Tetrahedron Lett. 1998, 39: 6589 -
4m
Crich D.Hwang J.-T. J. Org. Chem. 1998, 63: 2765 -
4n
Amii H.Kondo S.Uneyama K. Chem. Commun. 1998, 1845 -
4o
Rosa AM.Lobo AM.Branco PS.Prabhakar S. Tetrahedron 1997, 53: 285 -
4p
Giraud L.Lacote E.Renaud P. Helv. Chim. Acta 1997, 80: 2148 -
4q
Mander LN.Sherburn MS. Tetrahedron Lett. 1996, 37: 4255 -
4r
Lee E.Whang HS.Chung CK. Tetrahedron Lett. 1995, 36: 913 -
4s
Black M.Cadogan JIG.McNab H. J. Chem. Soc., Chem. Commun. 1990, 395 -
4t
Kohler JJ.Speckamp WN. Tetrahedron Lett. 1977, 631 -
4u
Kohler JJ.Speckamp WN. Tetrahedron Lett. 1977, 635 - 5
Bowman WR.Heaney H.Joadan BM. Tetrahedron 1991, 48: 10119 - 6
Harrowven DC.Nunn MIT.Newman NA.Fenwick DR. Tetrahedron Lett. 2001, 42: 961 - 7
Zhang W.Pugh G. Tetrahedron Lett. 2001, 42: 5613 -
8a
Bonfand E.Motherwell WB.Pennell AMK.Uddin MK.Ujjainwalla F. Heterocycles 1997, 46: 523 -
8b
Motherwell WB.Pennell AMK.Ujjainwalla F. J. Chem. Soc. Chem. Commun. 1992, 1067 -
9a
da Mata MLEN.Motherwell WB.Ujjainwalla F. Tetrahedron Lett. 1997, 38: 137 -
9b
da Mata MLEN.Motherwell WB.Ujjainwalla F. Tetrahedron Lett. 1997, 38: 141 ; see also ref.
References
Current address: Fluorous Technologies, Inc., 970 William Pitt Way, Pittsburgh, PA 15238, USA
10Procedure for tinhydride reaction of homopropargyl benzosulfonate 1: A solution of Bu3SnH (4.6 mmole) and AIBN (4.6 mmole) in 50 mL of dry benzene was added to a refluxing solution of 2 (4.6 mmole) in 90 mL of dry benzene over a period of 10 h via a syringe pump. After an additional 4-6 h, the reaction mixture was concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (gradient elution; 10% EtOAc-hexanes then 100% EtOAc) furnished in order of elution, the cyclic α-tributyltin substituted sultone 7 and α,β-unsaturated cyclic sultone 2. 1H NMR, IR and MS spectra of 2a and 2b are identical with those provided in the literature (ref. [8] ) Analytical data for 7a: 1H NMR (300 MHz, CDCl3) δ 0.73 (t, 3 CH3), 0.40-1.30 (3 × 3 CH2), 2.17 (br dd, 1 H), 2.41 (qd, 1 H), 4.57 (d, 1 H), 4.66 (m, 1 H), 4.80 (td, 1 H), 5.21 (dt, 1 H), 7.43 (dd, 1 H), 7. 53 (t, 1 H), 7.68 (d, 1 H), 7.79 (d, 1 H), 8.18 (d, 1 H), 8.99 (d, 1 H). 13C NMR (75 MHz, CDCl3) δ 9.9 (t, 3 CH2), 12.0 (q, 3 CH3), 25.6 (t, 3 CH2), 27.0 (t, 3 CH2), 27.3 (t), 37.1 (d), 1.4 (d), 69.6 (t), 119.9 (d), 124.6 (d), 124.9 (d), 126.2 (d), 127.0 (s), 134.9 (d), 137.6 (s), 144.6 (s), 148.3 (d). IR(neat)1334 (SO2), 1150 (SO2) cm-1 . MS m/e (rel. intensity) 552 (M+-1, 10), 405(40), 361(97), 294(70), 262 (M+-SnBu3, 100). Analytical data for 7b: 1H NMR (300 MHz, CDCl3) δ 0.74 (t, 3 CH), 0.50-1.30 (3 × 3 CH2), 2.11 (br d, 1 H), 2.51 (qd, 1 H), 2.88 (s, 2 CH3), 3.78 (dd, 1 H), 4.63 (dd, 1 H), 4. 81 (m, 2 H), 7.15 (d, 1 H), 7.35 (d, 1 H), 7. 43 (t, 1 H), 7.51 (t, 1 H), 7.77 (d, 1 H), 8.24 (d, 1 H). 13C NMR (75 MHz, CDCl3) δ 10.2 (t, 3 CH2), 12.0 (q, 3 CH3), 25.6 (t, 3 CH2), 27.0 (t, 3 CH2), 27.6 (t), 43.8 (d), 43.8 (q, 2 CH3), 52.4 (d), 70.1 (t), 112.9 (d), 115.9 (d), 121.3 (d), 122.8 (d), 123.1 (d), 125.5 (d), 128.1 (s), 130.5 (s), 135.1 (s), 150.5 (s). IR(neat)1340 (SO2), 1153 (SO2) cm-1 . MS m/e (rel. intensity) 594 (M+ + 1, 25), 538(25), 332(24), 240(100).