Subscribe to RSS
DOI: 10.1055/s-2002-31916
Short and Efficient Synthesis of Homo-Freidinger Lactams: An Olefin
Metathesis Approach Towards Conformationally Restricted β-Amino Acid Analogues
Publication History
Publication Date:
07 February 2007 (online)
Abstract
Peptide coupling of the N-allyl or N-homoallyl α-amino acid esters 6a-d with enantiomerically pure β-C-allylglycine gave access to the dienes 7a-d which were subjected to an olefin metathesis reaction. Thus, the novel lactam bridged peptide mimics 8a-d were obtained in good overall yield. Modifications in ring size and substitution pattern of the Homo-Freidinger lactams were demonstrated.
Key words
β-amino-acids - lactams - metathesis - peptide mimics - ruthenium
- 1
Giannis A.Kolter T. Angew. Chem., Int. Ed. Engl. 1993, 32: 1244 ; Angew. Chem. 1993, 105, 1303 - 2
Gante J. Angew. Chem. Int. Ed. 1994, 33: 1699 ; Angew. Chem. Engl. 1994, 106, 1780 - 3
Freidinger RM. J. Org. Chem. 1985, 50: 3631 - 4
Wolfe MS.Dutta D.Aubé J. J. Org. Chem. 1997, 62: 654 -
5a
Schuster M.Blechert S. Angew. Chem. Int. Ed. 1997, 36: 2036 ; Angew. Chem. 1997, 109, 2124 -
5b
Fürstner A. Angew. Chem. Int. Ed. 2000, 39: 3012 ; Angew. Chem. 2000, 112, 3140 -
6a
Miller SJ.Blackwell HE.Grubbs RH. J. Am. Chem. Soc. 1996, 118: 9606 -
6b
Piscopio AD.Miller JF.Koch K. Tetrahedron Lett. 1999, 55: 8189 -
6c For a review on RCM and peptide mimics see:
Philipps AJ.Abell AD. Aldrichimica Acta 1999, 32: 75 -
6d
Creighton CJ.Reitz AB. Org. Lett. 2001, 3: 893 -
6e
Vo-Thanh G.Boucard V.Sauriat-Dorizon H.Guibé F. Synlett 2001, 1: 37 -
6f
Reichwein JF.Wels B.Kruijtzer JAW.Versluis C.Liskamp RMJ. Angew. Chem. Int. Ed. 1999, 38: 3684 ; Angew. Chem. 1999, 111, 3906 -
6g
Reichwein JF.Versluis C.Liskamp RMJ. J. Org. Chem. 2000, 65: 6187 - For examples see:
-
7a
Seebach D.Matthews JL. Chem Commun. 1997, 2015 -
7b
Apella DH.Christianson LA.Klein DA.Klein DR.Powell DR.Huang X.Barchi JJ.Gellmann SH. Nature (London) 1997, 387: 381 -
8a
Ede NJ.Rae JD.Hearn MTW. Tetrahedron Lett. 1990, 31: 6071 -
8b
Weber K.Gmeiner P. Synlett 1998, 885 -
8c
Michel D.Waibel R.Gmeiner P. Heterocycles 1999, 51: 365 -
8d
Lehmann T.Michel D.Glänzel M.Waibel R.Gmeiner P. Heterocycles 1999, 51: 1389 - 9
Thomas C.Ohnmacht U.Niger M.Gmeiner P. Bioorg. Med. Chem. Lett. 1998, 8: 2885 - 10
Chiu S.Paulose CS.Mishra RK. Science (Washington D.C.) 1981, 214: 1261 - 11
Weber K.Ohnmacht U.Gmeiner P. J. Org. Chem. 2000, 65: 7406 - 12
Hoffmann T.Lanig H.Waibel R.Gmeiner P. Angew. Chem. Int. Ed. 2001, 40: 3361 ; Angew. Chem. 2001, 113, 3465 - 14
Fukuyama T.Jow C.-K.Cheung M. Tetrahedron Lett. 1995, 36: 6373 -
15a
Reichwein JF.Liskamp RMJ. Eur. J. Org. Chem. 2000, 2335 -
15b
Reichwein JF.Liskamp RMJ. Tetrahedron Lett. 1998, 39: 1243 -
16a
Schwab P.Grubbs RH.Ziller JW. J. Am. Chem. Soc. 1996, 118: 100 -
16b
Scholl M.Ding S.Lee CW.Grubbs RH. Org. Lett. 1999, 1: 953 - 17 Alkene Metathesis in Organic Synthesis:
Fürstner A. Top. Organomet. Chem. 1998, 1: 37 - 19
Trnka TM.Grubbs RH. Acc. Chem. Res. 2001, 34: 18
References
Obtained from PepTechCorp, Cambridge, 02140 MA and used without further purification.
18
General Procedure for the Ring-Closing Olefin Metathesis Reaction: Catalyst 9a (10 mol%) or 9b (5 mol%), was added to a 2 mM solution of the diene 8 in degassed 1,2-dichloro ethane under an atmosphere of dry nitrogen employing flame-dried glass ware. Subsequently, the mixture was heated to reflux until TLC indicated completion of the reaction. After evaporation of the solution the resulting residue was purified by column chromatography on Merck silica gel (230-400 mesh, ASTM) using freshly distilled solvents. All RCM-products were fully characterized by spectroscopic methods and microanalysis:
8a: colorless oil, [α]D
21 +5.3 (0.19, CHCl3). 1H NMR (360 MHz, CDCl3): δ 1.28 (t, J = 7.1 Hz, 3 H, CH
3
), 1.43 (s, 9 H, tert-Bu), 2.35-2.46 (m, 3 H, H-5a,b/H-3a), 3.01 (dd, J = 12.4, 5.3 Hz, 1 H, H-3b), 3.78-3.89 (m, 1 H, H-8a), 4.00-4.10 (m, 1 H, H-4), 4.16 (d, J = 17.4 Hz, 1 H, α-CH
2
), 4.20 (q, J = 7.2 Hz, 2 H, OCH
2
), 4.24 (d, J = 17.4 Hz, 1 H, α-CH
2
), 4.31-4.45 (m, 1 H, H-8b), 5.30 (d, J = 8.2 Hz, 1 H, NH), 5.48-5.66 (m, 1 H, CH=), 5.72-5.83 (m, 1 H, CH=). 13C NMR (CDCl3, 91 MHz): δ 14.1, 28.3, 29.8, 36.8, 48.9, 49.8, 52.6, 61.3, 79.2, 126.3, 128.5, 154.8, 169.2, 171.0. IR(film): 3324, 2977, 2931, 1747, 1712, 1700, 1643 cm-1. MS (EI):
m/z 326 [M+]. Anal. Calcd for C16H26N2O5: C, 58.88; H, 8.03; N, 8.58. Found: C, 59.05; H, 8.21; N, 8.43. TLC: Rf 0.12 (ligroin-EtOAc, 6:4).
8b: colorless oil, [α]D
22 -25.7 (0.07, CHCl3). 1H NMR (360 MHz, CDCl3): δ 1.39 (d, J = 7.1 Hz, 3 H, CH
3
), 1.44 (s, 9 H, tert-Bu), 2.35-2.47 (m, 3 H, H-5a,b/H-3a), 2.95 (dd, J = 12.2, 5.5 Hz, 1 H, H-3b), 3.69 (s, 3 H, OCH
3
), 3.82-3.95 (m, 1 H, H-8a), 4.05-4.15 (m, 2 H, H-8b/H-4), 5.30 (d, J = 8.5 Hz, 1 H, NH), 5.36 (q, J = 7.1 Hz, 1 H, α-CH), 5.45-5.55 (m, 1 H, CH=), 5.70-5.80 (m, 1H, CH=). 13C NMR (CDCl3, 91 MHz): δ = 14.8, 28.6, 29.4, 36.9, 47.7, 49.4, 52.1, 60.4, 79.3, 126.1, 128.9, 154.9, 160.4, 172.0. IR(film): 3318, 2978, 1741, 1708, 1641, 1502, 1475 cm-1. MS (EI): m/z 326 [M+]. Anal. Calcd for C16H26N2O5: C, 58.88; H, 8.03; N, 8.58. Found: C, 58.73; H, 8.11; N, 8.31. TLC: Rf 0.11 (ligroin-EtOAc 6:4).
8c: colorless oil, [α]D
20 +31.6 (0.19, CHCl3). 1H NMR (CDCl3, 360 MHz): δ 1.28 (t, J = 7.1 Hz, 3 H, CH
3
), 1.42 (s, 9 H, tert-Bu), 1.67 (s, 3 H, CH
3
), 2.35-2.40 (m, 3 H, H-5a,b/H-3a), 2.98 (dd, J = 12.4, 5.3 Hz, 1 H, H-3b), 3.64 (d, J = 17.8 Hz, 1 H, α-CH
2
), 4.20 (q, J = 7.2 Hz, 2 H, OCH
2
), 4.28 (d, J = 17.5 Hz, 1 H, α-CH
2
), 4.75-4.95 (m, 2 H, H-8a,b), 5.24 (d, J = 8.5 Hz, 1 H, NH), 5.48-5.55 (m, 1 H, H-4), 5.55-5.60 (m, 1 H, CH=). 13C NMR (CDCl3, 91 MHz): δ 14.1, 19.9, 23.3, 28.4, 29.7, 36.9, 50.0, 56.3, 61.3, 79.2, 121.9, 135.2, 154.9, 169.3, 173.1. IR(film): 3340, 2978, 2935, 1745, 1708, 1646, 1504 cm-1. MS (EI): m/z 340 [M+]. Anal. Calcd for C17H28N2O5 × 1/4 H2O: C, 58.94; H, 8.14; N, 8.09. Found: C 58.87; H, 8.56; N, 7.57. TLC: Rf 0.18 (ligroin-EtOAc 1:1).
8d: colorless oil, [α]D
22 +9.2 (0.13, CHCl3). 1H NMR (DMSO-d
6, 360 MHz, 353 K): δ 1.20 (t, J = 7.1 Hz, 3 H, CH
3
), 1.40 (s, 9 H, tert-Bu), 2.15-2.25 (m, 2 H, CH
2
), 2.28-2.39 (m, 2 H, CH
2
), 2.40-2.50 (m, 2 H, CH
2
), 3.45-3.60 (m, 2 H, H-9a,b), 3.70-3.85 (m, 1 H, H-4), 3.97 (d, J = 17.0 Hz, 1 H, α-CH
2
), 4.07 (d, J = 17.0 Hz, 1 H, α-CH
2
), 4.11 (q, J = 7.1 Hz, 2 H, OCH
2
), 5.62 (ddd, J = 8.5, 10.6, 8.5 Hz, 1 H, CH=), 5.76 (ddd, J = 8.1, 10.6, 8.1 Hz, 1 H, CH=), 6.28 (br s, 1 H, NH). 13C NMR (DMSO-d
6, 91 MHz): δ = 13.9, 26.0, 28.1, 31.3, 40.8, 49.6, 49.9, 50.3, 60.3, 79.1, 128.4, 130.2, 154.3, 169.3, 171.7. IR(film): 3385, 2979, 2933, 1747, 1706, 1630, 1487 cm-1. MS (EI): m/z 340 [M+]. Anal. Calcd for C17H28N2O5: C, 59.98; H, 8.29; N, 8.23. Found: C, 59.61; H, 8.48; N, 7.93. TLC: Rf 0.13 (ligroin/EtOAc 6:4).