Abstract
Transition metal complexes encompass a unique pool of building blocks with diverse stereochemical, electrochemical and photophysical features. Despite the current interest in employing polypyridine-containing coordination compounds for the fabrication of functional assemblies, their full potential as synthetic building blocks remains under-utilized. The account discusses the inspiration and rationale for advancing the synthetic chemistry of coordination compounds and presents recent developments where the complexity of these intriguing ‘inorganic’ building blocks is increased via ‘organic’ transformations.
1 Introduction
2 Why Metal-Containing Materials?
3 Why Develop the Organic Chemistry of Coordination Compounds?
4 Selecting a Parent Ligand
5 Functionalizing 1,10-Phenanthroline
6 Coordination Compounds as Building Blocks
6.1 Cross-Coupling Reactions
6.2 Radical Transformations
6.3 Nucleophilic Aromatic Substitutions
7 Where do we go from here?
8 Summary
Key words
coordination compounds - cross coupling - metal-containing materials - nucleophilic aromatic substitutions - 1,10-phenanthroline
References
1a
Kauffman GB.
Inorganic Coordination Compounds
Heyden and Sons;
London:
1981.
1b
Coordination Chemistry A Century of Progress
Kauffman GB.
ACS Symposium Series 565, American Chemical Society;
Washington DC:
1994.
2 The terms ‘organic’ and ‘inorganic’ are placed in quotation marks for obvious reasons. Coordination compounds, where an ‘inorganic’ ion is surrounded by ‘organic’ ligands represent the ultimate hybrid of disciplines.
3a
Reactions of Coordinated Ligands
Vol. 1:
Braterman PS.
Plenum Press;
New York:
1986.
3b
Reactions of Coordinated Ligands
Vol. 2:
Braterman PS.
Plenum Press;
New York:
1989.
3c
Constable EC.
Metals and Ligand Reactivity, An Introduction to the Organic Chemistry of Metal Complexes
VCH;
Weinheim:
1996.
Selected references for metal-containing materials:
4a
Chen C.-T.
Suslick KS.
Coord. Chem. Rev.
1993,
128:
293
4b
Manners I.
Angew. Chem., Int. Ed. Engl.
1996,
35:
1602
4c
Manners I.
Chem. Britain
1996,
46
4d
Pomogailo AD.
Savost’yanov VS.
Synthesis and Polymerization of Metal-Containing Monomers
CRC Press;
Boca Raton:
1994.
5 Ref.
[1a ]
, p. 56.
6
Kahr B.
Lovell S.
Subramonym JA.
Chirality
1998,
10:
66
7
Orna MV.
Kozlowski AW.
Baskinger A.
Adams T. In Coordination Chemistry, A Century of Progress 1893-1993
Kauffman GB.
ACS Symposium Series 565, American Chemical Society;
Washington DC:
1994.
p.165
8a
Wilcox DH.
In Werner Centennial
Vol 62:
Kauffman GB.
Adv. Chem. Ser., American Chemical Society;
Washington DC:
1967.
p.86
8b The affinity of Werner to dyes is not so surprising. Werner, who was trained as an organic chemist, was born in Mulhouse (the center of the Alsatian dyeing industry) and early on interacted with Noetling, one of the great dye chemists of the time.
9 See also: Wizinger R.
Angew. Chem.
1950,
62:
203
For recent review articles, see:
10a
Balzani V.
Credi A.
Venturi M.
Coord. Chem. Rev.
1998,
171:
3
10b
Ziessel R.
Hissler M.
El-ghayoury A.
Harriman A.
Coord. Chem. Rev.
1998,
180:
1251
10c For multiphoton, multielectron transfer processes in metal-containing polymers, see: Worl LA.
Jones WE.
Strouse GF.
Younathan JN.
Danielson E.
Maxwell KA.
Sykora M.
Meyer TJ.
Inorg. Chem.
1999,
38:
2705
11a
Kalyanasundaram K.
Coord. Chem. Rev.
1982,
46:
159
11b
Moser JE.
Bonnote P.
Grätzel M.
Coord. Chem. Rev.
1998,
171:
245
11c
Sykora M.
Maxwell KA.
DeSimone JM.
Meyer TJ.
Proc. Natl. Acad. Sci. U.S.A
2000,
97:
7687
12
Campagna S.
Denti G.
Serroni S.
Juris A.
Venturi M.
Ricevuto V.
Balzani V.
Chem.-Eur. J.
1995,
1:
211
13
Lehn J.-M.
Supramolecular Chemistry: Concepts and Perspective
VCH;
Weinheim:
1995.
14
Demas JN.
DeGraff BA.
Coord. Chem. Rev.
2001,
211:
317
For excellent review articles, see:
15a
Juris A.
Balzani V.
Barigelletti F.
Campagna S.
Belser P.
Von Zelewsky A.
Coord. Chem. Rev.
1988,
84:
85
15b
Sauvage J.-P.
Collin J.-P.
Chambron J.-C.
Guillerez S.
Coudret C.
Balzani V.
Barigelletti F.
De Cola L.
Flamigni L.
Chem. Rev.
1994,
94:
993
15c
Balzani V.
Juris A.
Venturi M.
Campagna S.
Serroni S.
Chem. Rev.
1996,
96:
759
16a
Barigelletti F.
Flamigni L.
Collin J.-P.
Sauvage J.-P.
Chem. Commun.
1997,
333
16b
De Cola L.
Belser P.
Coord. Chem. Rev.
1998,
177:
301
16c
Harriman A.
Ziessel R.
Coord. Chem. Rev.
1998,
171:
331
16d
Barigelletti F.
Flamigni L.
Chem. Soc. Rev.
2000,
29:
1
16e
Dixon IM.
Collin J.-P.
Sauvage JP.
Flamigni L.
Encinas S.
Barigelletti F.
Chem. Soc. Rev.
2000,
29:
385
17a
Constable EC.
Chem. Ind. (London)
1994,
56
17b
Constable EC.
Chem. Commun.
1997,
1073
17c
Swiegers GF.
Malefetse TJ.
Chem.-Eur. J.
2001,
7:
3636
18 For a novel ‘complexes as metals and complexes as ligands’ strategy, see: Denti G.
Campagna S.
Serroni S.
Ciano M.
Balzani V.
J. Am. Chem. Soc.
1992,
114:
2944
19 It is important to note that a significant amount of early work has been devoted to exploring the effect(s) of metal coordination on ligand reactivity without considerable attention to synthetic applications. See: Jones MM.
Ligand Reactivity and Catalysis
Academic Press;
New York:
1968.
20
Kaes C.
Katz A.
Hosseini MW.
Chem. Rev.
2000,
100:
3553
21
Kröhnke F.
Synthesis
1976,
1
22
Manske RHF.
Kulka M.
Org. React.
1953,
7:
59
23 For a review that summarizes the applications of phenanthroline ligands in bioorganic chemistry, molecular recognition and supramolecular chemistry, see: Sammes PG.
Yahioglu G.
Chem. Soc. Rev.
1994,
23:
327
24
Levis M.
Lüning U.
Müller M.
Schmittel-Wöhrle C.
Z. Naturforscher
1994,
49b:
675
25
Bosnich B.
Acc. Chem. Res.
1969,
2:
266
26 For the multi-step syntheses of bromo derivatives of 1,10-phenanthroline using the Skraup reaction, see: Case FH.
J. Org. Chem.
1951,
16:
941
27 The final cyclization step is a Skraup reaction between 8-amino-3-bromoquinoline and a protected hydrate of bromoacrolein. It affords 3,8-dibromo-1,10-phenanthroline in 4.4% yield.
28a For a monograph, see: Katritzky AR.
Taylor R.
Electrophilic Substitution of Heterocycles: Quantitative Aspects, In Advanced Heterocyclic Chem istry
Vol. 47:
Academic Press;
San Diego:
1990.
28b For an early review, see: Graham B. In The Chemistry of Heterocyclic Compounds
Allen CFH.
Interscience Publishers, Inc.;
New York:
1958.
p.386
28c A direct bromination reaction that gives low yields of di-, tri- and tetrabrominated phenanthrolines and traces of the 3- and 5-bromo derivatives has been reported: Denes V.
Chira R.
J. Prakt. Chem.
1978,
320:
172
29
Kress TJ.
Costantino SM.
J. Heterocycl. Chem.
1973,
10:
409
30
Tzalis D.
Tor Y.
Failla S.
Siegel JS.
Tetrahedron Lett.
1995,
36:
3489
31 Typical yields are 25-35% for 1 and 20-25% for 2 . Altering the reaction conditions results in changes in the ratio between the mono and dibromo derivatives, as well as the amounts of higher brominated side products.
32
Connors PJ.
Tzalis D.
Dunnick AL.
Tor Y.
Inorg. Chem.
1998,
37:
1121
33 Some of these interesting brominated phenanthrolines were also synthesized by Case. See ref.
[26 ]
34
Toyota S.
Woods CR.
Siegel JS.
Tetrahedron Lett.
1998,
39:
2697
35a Interestingly, Yamamoto has reported a bromination reaction of phen to 3,8-dibromo-1,10-phenanthroline in S2 Cl2 and pyridine claiming the exclusive formation of the desired product. See: Saito Y.
Koizumi T.
Osakada K.
Yamamoto T.
Can. J. Chem.
1997,
75:
1336
35b Sauvage has reported an optimized procedure. See: Dietrich-Buchecker C.
Jimenez MC.
Sauvage J.-P.
Tetrahedron Lett.
1999,
40:
3395
For selected reviews, see:
36a
Sonogashira K.
Comp. Org. Synth.
1991,
3:
521
36b
Hegedus LS. In Transition Metals in the Synthesis of Complex Organic Molecules
University Science Books;
Mill Valley:
1994.
p.65
36c
Rossi R.
Carpita A.
Bellina F.
Org. Prep. Proc. Int.
1995,
27:
127
37
Nicolaou KC.
Sorensen EJ.
Classics in Total Synthesis, Targets, Strategies, Methods
VCH;
Weinheim:
1996.
p.565
38a
Hartwig JF.
Acc. Chem. Res.
1998,
31:
852
38b
Hartwig JF.
Angew. Chem. Int. Ed.
1998,
37:
2047
38c
Yang BH.
Buchwald SL.
J. Organometal. Chem.
1999,
576:
125
38d
Wolfe JP.
Wagaw S.
Marcoux JF.
Buchwald SL.
Acc. Chem. Res.
1998,
31:
805
39
Tzalis D.
Tor Y.
Chem. Commun.
1996,
1043
40 For example, the reaction of 4 with 4-ethynyltoluene gave 8 in 91% isolated yield after 1 h at r.t.
41 At about the same time, Collin’s group at Strasbourg reported the use of functionalized tpy-based RuII complexes as building blocks using Suzuki cross-coupling reactions. See: Chodorowski-Kimmes S.
Beley M.
Collin J.-P.
Sauvage J.-P.
Tetrahedron Lett.
1996,
37:
2963
42
Tzalis D.
Tor Y.
J. Am. Chem. Soc.
1997,
118:
852
43a
Hurley DJ.
Tor Y.
J. Am. Chem. Soc.
1998,
120:
2194
43b
Hurley DJ.
Tor Y.
J. Am. Chem. Soc.
2002,
124:
3749
44
Joshi HS.
Tor Y.
Chem. Commun.
2001,
549
45
Hurley DJ.
Ph.D. Thesis
University of California;
San Diego:
2000.
46 Weizman, H.; Tor, Y. unpublished results .
47
Glazer EC.
Tor Y.
Polymer Preprints
1999,
40:
513
48a
Jasperse CP.
Curran DP.
Fevig TL.
Chem. Rev.
1991,
91:
1237
48b
Curran DP.
Comp. Org. Synth.
1991,
4:
779
49
Porter NA.
Giese B.
Curran DP.
Acc. Chem. Res.
1991,
24:
296
50 Hurley, D. J.; Tor, Y. unpublished results .
51a For an early review, see: Semmelhack MF.
Comp. Org. Synth.
1991,
4:
517
51b For selected recent examples, see: Janetka JW.
Rich DH.
J. Am. Chem. Soc.
1997,
119:
6488
51c See also: Pearson AJ.
Gontcharov AV.
J. Org. Chem.
1998,
63:
152
51d
Pearson AJ.
Chelliah MV.
J. Org. Chem.
1998,
63:
3087
51e
Pearson AJ.
Heo J.-N.
Org. Lett.
2000,
2:
2987
51f
Pearson AJ.
Heo J.-N.
Tetrahedron Lett.
2000,
41:
5991
51g
Ghebreyessus KY.
Nelson JH.
Organometallics
2000,
19:
3387
52 For an early review, see: Constable EC.
Polyhedron
1983,
2:
551
53
Richard AF.
Ridd JH.
Tobe ML.
Chem. Ind. (London)
1963,
1727
54a
Gillard RD.
Hill REE.
Maskill R.
J. Chem. Soc. A
1970,
1447
54b See also ref.
[3b ]
and ref.
[19 ]
55
Jackson K.
Ridd JH.
Tobe ML.
J. Chem. Soc., Perkin Trans. 2
1979,
611
56a
Constable EC.
Inorg. Chim. Acta.
1984,
82:
53
56b
Constable EC.
Leese TA.
Inorg. Chim. Acta.
1988,
146:
55
57
Constable EC.
Cargill Thompson AMW.
Harveson P.
Macko L.
Zehnder M.
Chem- Eur. J.
1995,
1:
360
58a
Constable EC.
Inorg. Chim. Acta
1986,
117:
L33
58b See also: Constable EC.
Phillips V.
Chem. Commun.
1997,
827
59
Tzalis D.
Tor Y.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2666
60
Miller J.
Aromatic Nucleophilic Substitutions
Elsevier;
New York:
1968.
61
Hurley DJ.
Roppe JR.
Tor Y.
Chem. Commun.
1999,
993
62
Hurley DJ.
Tor Y.
Tetrahedron Lett.
2001,
42:
7217
63a
Erkkila KE.
Odom DT.
Barton JK.
Chem. Rev.
1999,
99:
2777
63b
Chambron J.-C.
Sauvage J.-P.
Amouyal E.
Koffi P.
Nouv. J. Chim.
1985,
9:
527
63c For the original synthesis of dppz, see: Dickeson JE.
Summers LA.
Aust. J. Chem.
1970,
23:
1023
64 Glazer, E. C.; Tor, Y. submitted .
65
Rudi A.
Benayahu Y.
Goldberg I.
Kashman Y.
Tetrahedron Lett.
1988,
29:
6655
66
Rudi A.
Kashman Y.
Gut D.
Lellouche F.
Kol M.
Chem. Commun.
1997,
17
67
Luedtke NW.
Hwang JS.
Glazer EC.
Gut D.
Kol M.
Tor Y.
ChemBioChem, in press