Subscribe to RSS
DOI: 10.1055/s-2002-32571
Coordination Compounds as Synthetic Building Blocks
Publication History
Publication Date:
07 February 2007 (online)
Abstract
Transition metal complexes encompass a unique pool of building blocks with diverse stereochemical, electrochemical and photophysical features. Despite the current interest in employing polypyridine-containing coordination compounds for the fabrication of functional assemblies, their full potential as synthetic building blocks remains under-utilized. The account discusses the inspiration and rationale for advancing the synthetic chemistry of coordination compounds and presents recent developments where the complexity of these intriguing ‘inorganic’ building blocks is increased via ‘organic’ transformations.
1 Introduction
2 Why Metal-Containing Materials?
3 Why Develop the Organic Chemistry of Coordination
Compounds?
4 Selecting a Parent Ligand
5 Functionalizing 1,10-Phenanthroline
6 Coordination Compounds as Building Blocks
6.1 Cross-Coupling Reactions
6.2 Radical Transformations
6.3 Nucleophilic Aromatic Substitutions
7 Where do we go from here?
8 Summary
Key words
coordination compounds - cross coupling - metal-containing materials - nucleophilic aromatic substitutions - 1,10-phenanthroline
-
1a
Kauffman GB. Inorganic Coordination Compounds Heyden and Sons; London: 1981. -
1b
Coordination Chemistry A Century of Progress
Kauffman GB. ACS Symposium Series 565, American Chemical Society; Washington DC: 1994. -
3a
Reactions of Coordinated Ligands
Vol. 1:
Braterman PS. Plenum Press; New York: 1986. -
3b
Reactions of Coordinated Ligands
Vol. 2:
Braterman PS. Plenum Press; New York: 1989. -
3c
Constable EC. Metals and Ligand Reactivity, An Introduction to the Organic Chemistry of Metal Complexes VCH; Weinheim: 1996. - Selected references for metal-containing materials:
-
4a
Chen C.-T.Suslick KS. Coord. Chem. Rev. 1993, 128: 293 -
4b
Manners I. Angew. Chem., Int. Ed. Engl. 1996, 35: 1602 -
4c
Manners I. Chem. Britain 1996, 46 -
4d
Pomogailo AD.Savost’yanov VS. Synthesis and Polymerization of Metal-Containing Monomers CRC Press; Boca Raton: 1994. - 6
Kahr B.Lovell S.Subramonym JA. Chirality 1998, 10: 66 - 7
Orna MV.Kozlowski AW.Baskinger A.Adams T. In Coordination Chemistry, A Century of Progress 1893-1993Kauffman GB. ACS Symposium Series 565, American Chemical Society; Washington DC: 1994. p.165 -
8a
Wilcox DH. In Werner Centennial Vol 62:Kauffman GB. Adv. Chem. Ser., American Chemical Society; Washington DC: 1967. p.86 -
8b
The affinity of Werner to dyes is not so surprising. Werner, who was trained as an organic chemist, was born in Mulhouse (the center of the Alsatian dyeing industry) and early on interacted with Noetling, one of the great dye chemists of the time.
- 9 See also:
Wizinger R. Angew. Chem. 1950, 62: 203 - For recent review articles, see:
-
10a
Balzani V.Credi A.Venturi M. Coord. Chem. Rev. 1998, 171: 3 -
10b
Ziessel R.Hissler M.El-ghayoury A.Harriman A. Coord. Chem. Rev. 1998, 180: 1251 -
10c For multiphoton, multielectron transfer processes in metal-containing polymers, see:
Worl LA.Jones WE.Strouse GF.Younathan JN.Danielson E.Maxwell KA.Sykora M.Meyer TJ. Inorg. Chem. 1999, 38: 2705 -
11a
Kalyanasundaram K. Coord. Chem. Rev. 1982, 46: 159 -
11b
Moser JE.Bonnote P.Grätzel M. Coord. Chem. Rev. 1998, 171: 245 -
11c
Sykora M.Maxwell KA.DeSimone JM.Meyer TJ. Proc. Natl. Acad. Sci. U.S.A 2000, 97: 7687 - 12
Campagna S.Denti G.Serroni S.Juris A.Venturi M.Ricevuto V.Balzani V. Chem.-Eur. J. 1995, 1: 211 - 13
Lehn J.-M. Supramolecular Chemistry: Concepts and Perspective VCH; Weinheim: 1995. - 14
Demas JN.DeGraff BA. Coord. Chem. Rev. 2001, 211: 317 - For excellent review articles, see:
-
15a
Juris A.Balzani V.Barigelletti F.Campagna S.Belser P.Von Zelewsky A. Coord. Chem. Rev. 1988, 84: 85 -
15b
Sauvage J.-P.Collin J.-P.Chambron J.-C.Guillerez S.Coudret C.Balzani V.Barigelletti F.De Cola L.Flamigni L. Chem. Rev. 1994, 94: 993 -
15c
Balzani V.Juris A.Venturi M.Campagna S.Serroni S. Chem. Rev. 1996, 96: 759 -
16a
Barigelletti F.Flamigni L.Collin J.-P.Sauvage J.-P. Chem. Commun. 1997, 333 -
16b
De Cola L.Belser P. Coord. Chem. Rev. 1998, 177: 301 -
16c
Harriman A.Ziessel R. Coord. Chem. Rev. 1998, 171: 331 -
16d
Barigelletti F.Flamigni L. Chem. Soc. Rev. 2000, 29: 1 -
16e
Dixon IM.Collin J.-P.Sauvage JP.Flamigni L.Encinas S.Barigelletti F. Chem. Soc. Rev. 2000, 29: 385 -
17a
Constable EC. Chem. Ind. (London) 1994, 56 -
17b
Constable EC. Chem. Commun. 1997, 1073 -
17c
Swiegers GF.Malefetse TJ. Chem.-Eur. J. 2001, 7: 3636 - 18 For a novel ‘complexes as metals and complexes as ligands’ strategy, see:
Denti G.Campagna S.Serroni S.Ciano M.Balzani V. J. Am. Chem. Soc. 1992, 114: 2944 - 19 It is important to note that a significant amount of early work has been devoted to exploring the effect(s) of metal coordination on ligand reactivity without considerable attention to synthetic applications. See:
Jones MM. Ligand Reactivity and Catalysis Academic Press; New York: 1968. - 20
Kaes C.Katz A.Hosseini MW. Chem. Rev. 2000, 100: 3553 - 21
Kröhnke F. Synthesis 1976, 1 - 22
Manske RHF.Kulka M. Org. React. 1953, 7: 59 - 23 For a review that summarizes the applications of phenanthroline ligands in bioorganic chemistry, molecular recognition and supramolecular chemistry, see:
Sammes PG.Yahioglu G. Chem. Soc. Rev. 1994, 23: 327 - 24
Levis M.Lüning U.Müller M.Schmittel-Wöhrle C. Z. Naturforscher 1994, 49b: 675 - 25
Bosnich B. Acc. Chem. Res. 1969, 2: 266 - 26 For the multi-step syntheses of bromo derivatives of 1,10-phenanthroline using the Skraup reaction, see:
Case FH. J. Org. Chem. 1951, 16: 941 -
28a For a monograph, see:
Katritzky AR.Taylor R. Electrophilic Substitution of Heterocycles: Quantitative Aspects, In Advanced Heterocyclic Chemistry Vol. 47: Academic Press; San Diego: 1990. -
28b For an early review, see:
Graham B. In The Chemistry of Heterocyclic CompoundsAllen CFH. Interscience Publishers, Inc.; New York: 1958. p.386 -
28c A direct bromination reaction that gives low yields of di-, tri- and tetrabrominated phenanthrolines and traces of the 3- and 5-bromo derivatives has been reported:
Denes V.Chira R. J. Prakt. Chem. 1978, 320: 172 - 29
Kress TJ.Costantino SM. J. Heterocycl. Chem. 1973, 10: 409 - 30
Tzalis D.Tor Y.Failla S.Siegel JS. Tetrahedron Lett. 1995, 36: 3489 - 32
Connors PJ.Tzalis D.Dunnick AL.Tor Y. Inorg. Chem. 1998, 37: 1121 - 34
Toyota S.Woods CR.Siegel JS. Tetrahedron Lett. 1998, 39: 2697 -
35a Interestingly, Yamamoto has reported a bromination reaction of phen to 3,8-dibromo-1,10-phenanthroline in S2Cl2 and pyridine claiming the exclusive formation of the desired product. See:
Saito Y.Koizumi T.Osakada K.Yamamoto T. Can. J. Chem. 1997, 75: 1336 -
35b Sauvage has reported an optimized procedure. See:
Dietrich-Buchecker C.Jimenez MC.Sauvage J.-P. Tetrahedron Lett. 1999, 40: 3395 - For selected reviews, see:
-
36a
Sonogashira K. Comp. Org. Synth. 1991, 3: 521 -
36b
Hegedus LS. In Transition Metals in the Synthesis of Complex Organic Molecules University Science Books; Mill Valley: 1994. p.65 -
36c
Rossi R.Carpita A.Bellina F. Org. Prep. Proc. Int. 1995, 27: 127 - 37
Nicolaou KC.Sorensen EJ. Classics in Total Synthesis, Targets, Strategies, Methods VCH; Weinheim: 1996. p.565 -
38a
Hartwig JF. Acc. Chem. Res. 1998, 31: 852 -
38b
Hartwig JF. Angew. Chem. Int. Ed. 1998, 37: 2047 -
38c
Yang BH.Buchwald SL. J. Organometal. Chem. 1999, 576: 125 -
38d
Wolfe JP.Wagaw S.Marcoux JF.Buchwald SL. Acc. Chem. Res. 1998, 31: 805 - 39
Tzalis D.Tor Y. Chem. Commun. 1996, 1043 - 41 At about the same time, Collin’s group at Strasbourg reported the use of functionalized tpy-based RuII complexes as building blocks using Suzuki cross-coupling reactions. See:
Chodorowski-Kimmes S.Beley M.Collin J.-P.Sauvage J.-P. Tetrahedron Lett. 1996, 37: 2963 - 42
Tzalis D.Tor Y. J. Am. Chem. Soc. 1997, 118: 852 -
43a
Hurley DJ.Tor Y. J. Am. Chem. Soc. 1998, 120: 2194 -
43b
Hurley DJ.Tor Y. J. Am. Chem. Soc. 2002, 124: 3749 - 44
Joshi HS.Tor Y. Chem. Commun. 2001, 549 - 45
Hurley DJ. Ph.D. Thesis University of California; San Diego: 2000. - 47
Glazer EC.Tor Y. Polymer Preprints 1999, 40: 513 -
48a
Jasperse CP.Curran DP.Fevig TL. Chem. Rev. 1991, 91: 1237 -
48b
Curran DP. Comp. Org. Synth. 1991, 4: 779 - 49
Porter NA.Giese B.Curran DP. Acc. Chem. Res. 1991, 24: 296 -
51a For an early review, see:
Semmelhack MF. Comp. Org. Synth. 1991, 4: 517 -
51b For selected recent examples, see:
Janetka JW.Rich DH. J. Am. Chem. Soc. 1997, 119: 6488 -
51c See also:
Pearson AJ.Gontcharov AV. J. Org. Chem. 1998, 63: 152 -
51d
Pearson AJ.Chelliah MV. J. Org. Chem. 1998, 63: 3087 -
51e
Pearson AJ.Heo J.-N. Org. Lett. 2000, 2: 2987 -
51f
Pearson AJ.Heo J.-N. Tetrahedron Lett. 2000, 41: 5991 -
51g
Ghebreyessus KY.Nelson JH. Organometallics 2000, 19: 3387 - 52 For an early review, see:
Constable EC. Polyhedron 1983, 2: 551 - 53
Richard AF.Ridd JH.Tobe ML. Chem. Ind. (London) 1963, 1727 -
54a
Gillard RD.Hill REE.Maskill R. J. Chem. Soc. A 1970, 1447 - 54b
- 55
Jackson K.Ridd JH.Tobe ML. J. Chem. Soc., Perkin Trans. 2 1979, 611 -
56a
Constable EC. Inorg. Chim. Acta. 1984, 82: 53 -
56b
Constable EC.Leese TA. Inorg. Chim. Acta. 1988, 146: 55 - 57
Constable EC.Cargill Thompson AMW.Harveson P.Macko L.Zehnder M. Chem- Eur. J. 1995, 1: 360 -
58a
Constable EC. Inorg. Chim. Acta 1986, 117: L33 -
58b See also:
Constable EC.Phillips V. Chem. Commun. 1997, 827 - 59
Tzalis D.Tor Y. Angew. Chem., Int. Ed. Engl. 1997, 36: 2666 - 60
Miller J. Aromatic Nucleophilic Substitutions Elsevier; New York: 1968. - 61
Hurley DJ.Roppe JR.Tor Y. Chem. Commun. 1999, 993 - 62
Hurley DJ.Tor Y. Tetrahedron Lett. 2001, 42: 7217 -
63a
Erkkila KE.Odom DT.Barton JK. Chem. Rev. 1999, 99: 2777 -
63b
Chambron J.-C.Sauvage J.-P.Amouyal E.Koffi P. Nouv. J. Chim. 1985, 9: 527 -
63c For the original synthesis of dppz, see:
Dickeson JE.Summers LA. Aust. J. Chem. 1970, 23: 1023 - 65
Rudi A.Benayahu Y.Goldberg I.Kashman Y. Tetrahedron Lett. 1988, 29: 6655 - 66
Rudi A.Kashman Y.Gut D.Lellouche F.Kol M. Chem. Commun. 1997, 17 - 67
Luedtke NW.Hwang JS.Glazer EC.Gut D.Kol M.Tor Y. ChemBioChem, in press
References
The terms ‘organic’ and ‘inorganic’ are placed in quotation marks for obvious reasons. Coordination compounds, where an ‘inorganic’ ion is surrounded by ‘organic’ ligands represent the ultimate hybrid of disciplines.
5Ref. [1a] , p. 56.
27The final cyclization step is a Skraup reaction between 8-amino-3-bromoquinoline and a protected hydrate of bromoacrolein. It affords 3,8-dibromo-1,10-phenanthroline in 4.4% yield.
31Typical yields are 25-35% for 1 and 20-25% for 2. Altering the reaction conditions results in changes in the ratio between the mono and dibromo derivatives, as well as the amounts of higher brominated side products.
33Some of these interesting brominated phenanthrolines were also synthesized by Case. See ref. [26]
40For example, the reaction of 4 with 4-ethynyltoluene gave 8 in 91% isolated yield after 1 h at r.t.
46Weizman, H.; Tor, Y. unpublished results.
50Hurley, D. J.; Tor, Y. unpublished results.
64Glazer, E. C.; Tor, Y. submitted.