RSS-Feed abonnieren
DOI: 10.1055/s-2002-33540
The N-Cumyl
Group for Facile Manipulation of Carboxamides, Sulfonamides and
Aryl O-Carbamates
Post-Directed ortho Metalation
Publikationsverlauf
Publikationsdatum:
17. September 2002 (online)
Biographical Sketches
Directed metalation groups (DMGs) are sometimes compromised by the inability to convert them to different functionalities under mild conditions in post-directed ortho metalation (DoM) steps. [1] The advent of N-cumyl modified carboxamide, sulfonamide and O-carbamate DMGs, [2] whose primary advantages over analogous N-t-Bu [3] and other N-alkyl systems rest in fast and/or mild hydrolysis post-DoM, has opened new possibilities for the manipulation of substituted aromatics (Scheme 1). Starting materials are easily prepared by treating the appropriate benzoyl or sulfonyl chlorides with cumyl amine [4] for access to benzamides and sulfonamides, respectively, or by treating phenyl chloroformate with a secondary N-alkyl-N-cumyl amine [5] for O-carbamates.
This Spotlight reviews several applications of N-cumyl-substituted functional groups in organic synthesis since the preliminary results of 1999. [2]
Abstracts
ortho-Substituted N-cumylbenzamides and aryl O-carbamates may be easily decumylated [3] under a number of conditions. [2] Treatment of secondary N-cumylbenzamides with a Lewis acid (BF3·OEt2/CH2Cl2/r.t.) gives primary amides in good yields, while application of Charette’s conditions [6] (Tf2O/pyridine/CH2Cl2/-40 °C) affords benzonitriles in one pot. Similarly, O-carbamates undergo rapid decumylation (TFA/r.t./6-10 min) to yield benzoxazines or secondary carbamates; the latter may be easily hydrolyzed to phenols (10% NaOH/EtOH/r.t.). | |
Metalation of N-cumyl phthalimidine (2.2 equiv s-BuLi/TMEDA/THF/-78 °C) followed by electrophile quench gives, after oxidation (PDC/DMF/r.t.) access to 3-substituted phthalimides that can be decumylated (TFA/50 °C/9-16 h) in high yield. [2] The method has been extended to TMS-protected sultams derived from N-cumylbenzenesulfonamide, to afford 7-substituted saccharins after simple desilylation (K2CO3/MeOH), oxidation (PDC/DMF/r.t.) and decumylation (CF3CH2OH/reflux/90 min). [7] Alternatively, decumylation of 7-substituted TMS-protected sultams (CF3CH2OH/reflux) provide direct access to 7-substituted benzisothiazole-1,1-dioxides. | |
Weinreb has shown that N-cumyl-N-(α-methoxy)benzylbenzamides may be used to generate N-acylimines (BF3·OEt2/CH2Cl2/r.t./18-21 h) which can be trapped with allyltrimethylsilane, with concomitant loss of the N-cumyl group, to afford N-homoallylic secondary benzamides.8 | |
Clayden has used N-cumyl-N-benzylbenzamides to induce dearomatizing cyclization reactions, [9] initiated by benzylic anion formation (2 equiv t-BuLi/12 equiv HMPA/THF/-40 °C), to provide enone products after acidic workup. The use of cumyl as the N-protecting group in such systems was a key aspect to the successful synthesis of (±)-kainic acid, [10] since the corresponding t-Bu3 analogue failed to dealkylate under identical conditions (TFA/reflux/6 h). | |
Enantioselective applications are also possible. N-Cumyl-N-ethylferrocenecarboxamide sterically mimics [11] N,N-diisopropylferrocenecarboxamide in (-)-sparteine-mediated metalation to provide 2-substituted ferrocenes in good yield. Unlike the original N,N-diisopropyl systems, [12] [13] the products are open to flexible manipulation by virtue of decumylation under very mild conditions (CF3CH2OH/reflux/5-12 h) [3] to give, usually quantitatively, enantiomerically enriched secondary ferrocenecarboxamides for further transformations. [14] For example, N-allylation of N-ethyl-2-vinylferrocenecarboxamide followed by olefin metathesis with Grubbs’ catalyst gives, after hydrogenation, a planar chiral ferrocenyl azepinone. Subsequent metalation and electrophile quench (Ph2PCl) affords structurally novel phosphine ligands.11 |
-
1a
Snieckus V. Chem. Rev. 1990, 90: 879 -
1b
Cuevas J.-C.Patil P.Snieckus V. Tetrahedron Lett. 1989, 30: 5841 - 2
Metallinos C.Nerdinger S.Snieckus V. Org. Lett. 1999, 1: 1183 - 3 More forcing conditions are required
to dealkylate N-t-Bu benzamides;
see:
Reitz DB.Massey SM. J. Org. Chem. 1990, 55: 1375 -
4a Cumyl
amine can be prepared from cumyl alcohol by a modification of the
procedure of:
Balderman D.Kalir A. Synthesis 1978, 24 . The azide is reduced with LiAlH4 (Et2O/0 °C → r.t. → reflux) or H2 (Lindlar’s catalyst/EtOH) instead of Raney nickel -
4b
Cumyl amine is also commercially available from TCI America: catalogue no. C1293.
- 5
Melnick M.Reich SH.Lewis KK.Mitchell JLJ.Nguyen D.Trippe AJ.Dawson H.Davies JF.Appelt K.Wu B.Musick L.Gehlhaar DK.Webber S.Shetty B.Kosa M.Kahil D.Andrada D. J. Med. Chem. 1996, 39: 2795 - 6
Charette AB.Chua P. Synlett 1998, 163 - 8
Chao W.Weinreb SM. Tetrahedron Lett. 2000, 41: 9199 - 9
Clayden J.Menet CJ.Mansfield DJ. Org. Lett. 2000, 2: 4229 - 10
Clayden J.Tchabanenko K. Chem. Commun. 2000, 317 - 11
Metallinos C. Ph.D. Thesis Queen’s University; Kingston, Ontario, Canada: 2001. - 12
Tsukazaki M.Tinkl M.Roglans A.Chapell BJ.Taylor NJ.Snieckus V. J. Am. Chem. Soc. 1996, 118: 685 - 13
Laufer RS.Veith U.Taylor NJ.Snieckus V. Org. Lett. 2000, 2: 629
References
Ang, P. J. A.; Metallinos, C.; Snieckus, V., unpublished results.
14Metallinos, C.; Szillat, H.; Taylor, N. J.; Snieckus, V., manuscript in preparation.
-
1a
Snieckus V. Chem. Rev. 1990, 90: 879 -
1b
Cuevas J.-C.Patil P.Snieckus V. Tetrahedron Lett. 1989, 30: 5841 - 2
Metallinos C.Nerdinger S.Snieckus V. Org. Lett. 1999, 1: 1183 - 3 More forcing conditions are required
to dealkylate N-t-Bu benzamides;
see:
Reitz DB.Massey SM. J. Org. Chem. 1990, 55: 1375 -
4a Cumyl
amine can be prepared from cumyl alcohol by a modification of the
procedure of:
Balderman D.Kalir A. Synthesis 1978, 24 . The azide is reduced with LiAlH4 (Et2O/0 °C → r.t. → reflux) or H2 (Lindlar’s catalyst/EtOH) instead of Raney nickel -
4b
Cumyl amine is also commercially available from TCI America: catalogue no. C1293.
- 5
Melnick M.Reich SH.Lewis KK.Mitchell JLJ.Nguyen D.Trippe AJ.Dawson H.Davies JF.Appelt K.Wu B.Musick L.Gehlhaar DK.Webber S.Shetty B.Kosa M.Kahil D.Andrada D. J. Med. Chem. 1996, 39: 2795 - 6
Charette AB.Chua P. Synlett 1998, 163 - 8
Chao W.Weinreb SM. Tetrahedron Lett. 2000, 41: 9199 - 9
Clayden J.Menet CJ.Mansfield DJ. Org. Lett. 2000, 2: 4229 - 10
Clayden J.Tchabanenko K. Chem. Commun. 2000, 317 - 11
Metallinos C. Ph.D. Thesis Queen’s University; Kingston, Ontario, Canada: 2001. - 12
Tsukazaki M.Tinkl M.Roglans A.Chapell BJ.Taylor NJ.Snieckus V. J. Am. Chem. Soc. 1996, 118: 685 - 13
Laufer RS.Veith U.Taylor NJ.Snieckus V. Org. Lett. 2000, 2: 629
References
Ang, P. J. A.; Metallinos, C.; Snieckus, V., unpublished results.
14Metallinos, C.; Szillat, H.; Taylor, N. J.; Snieckus, V., manuscript in preparation.