Synlett 2002(10): 1703-1705
DOI: 10.1055/s-2002-34223
LETTER
© Georg Thieme Verlag Stuttgart · New York

A New Reaction of N-substituted Formamides with Trichloroethylene under Conditions of Phase-Transfer Catalysis (PTC)

Andrzej Jończyk*, Krzysztof Michalski
Warsaw University of Technology, Faculty of Chemistry, Koszykowa 75, 00-662 Warszawa, Poland
Fax: +48(22)6282741; e-Mail: anjon@ch.pw.edu.pl;
Further Information

Publication History

Received 22 July 2002
Publication Date:
23 September 2002 (online)

Abstract

Reaction of N-aryl formamides 1 with trichloroethylene (TRI) carried out in the presence of 50% aq sodium hydroxide and a catalyst, tetra-butylammonium hydrogen sulfate (TBAHS), affords substituted enamidines 2, and pyrrole-2,5-diylidenediamines 3, in good yields. Formation of these products is rationalized.

    References

  • 1 Hopf H. Witulski B. Modern Acetylene Chemistry   Stang PJ. Diederich F. VCH; Weinheim: 1995.  p.48 
  • 2a Dehmlow EV. Dehmlow SS. Phase Transfer Catalysis   3rd ed.:  Verlag Chemie; Weinheim: 1993. 
  • 2b Starks CM. Liotta CL. Halpern M. Phase-transfer Catalysis   Chapman and Hall; New York London: 1994. 
  • 2c Mkosza M. FedoryÒski M. In Handbook of Phase Transfer Catalysis   Sasson Y. Neumann R. Blackie Academic and Professional; London: 1997.  p.135 
  • 3a JoÒczyk A. Gierczak AH. Synthesis  1998,  962 
  • 3b JoÒ czyk A. Gierczak AH. Tetrahedron  2000,  56:  6083 
  • 4 Pielichowski J. Bogda D. Polish J. Chem.  1988,  40:  483 
  • 5a Pielichowski J. Bogda D. Liebigs Ann. Chem.  1988,  595 
  • 5b Pielichowski J. Bogda D. Bull. Acad. Pol. Sci., Chim.  1989,  37:  123 ; Chem. Abstr. 1990, 112, 198222
  • 6 Martynov AV. Mirskova AN. Kalikhman ID. Voronkov MG. Zh. Org. Khim.  1988,  24:  509 ; Chem. Abstr. 1989, 110, 153824
  • 8 Pielichowski J. Popielarz R. Tetrahedron  1984,  40:  2671 
  • 12a Fukuda M. Okamoto Y. Sakurai H. Bull. Chem. Soc. Jpn.  1977,  50:  1895 
  • 12b Prajznar B. Rocz. Chem.  1962,  36:  1449 ; Chem. Abstr. 1963, 59, 5139.
  • 13a Von Braun J. Jostes F. Heymons A. Chem. Ber.  1927,  60:  92 
  • 13b Yamagida S. Fujita T. Ohoka M. Katagiri I. Miyabe M. Komori S. Bull. Chem. Soc. Jpn.  1973,  46:  303 
  • 13c Meth-Cohn O. Westwood KT. J. Chem. Soc., Perkin Trans. 1  1983,  2089 
  • 14 Only a few structures, related to azacyclic products 3, are described: Anwar M. Abdel-Hay FI. Fahmy M. Rev. Roum. Chim.  1978,  23:  1085 ; Chem. Abstr. 1979, 90, 54899b
  • 15 Speziale AJ. Smith LR. J. Am. Chem. Soc.  1962,  84:  1868 
  • 16 Aniline reacted with TRI at ca 120 °C affording mixture of products: Shklyar SA. Vestsi Nats. Akad. Navuk Belarusi, Ser. Khim. Navuk  1972,  95 ; Chem. Abstr. 1973, 78, 15678
  • 17 Pielichowski J. Czub P. Bull. Soc. Chim. Belg.  1995,  104:  407 
7

JoÒczyk, A.; Michalski, K., manuscript in preparation.

9

Experimental Procedure: Amide 1a (0.73 g, 6 mmol), diethyl ether (15 mL), cyclohexane (5 mL), TRI (1.58 g, ca 1.1 mL, 12 mmol) and TBAHS (0.02 g, 0.06 mmol) were vigorously stirred while 50% aq NaOH (4.8 g, 3.2 mL, 60 mmol) was added dropwise at 20-25 °C. After addition, the reaction was carried out for 15 min, the mixture was poured into the ice with water, the phases were separated, the water phase was extracted with CH2Cl2 (5 × 20 mL), the combined organic extracts were dried (MgSO4) and concentrated. The products 2a and 3a were isolated by column chromatography [Merck silica gel 60 (230-400 mesh), eluent CH2Cl2]. 2a: 1H NMR (400 MHz, CDCl3): δ = 3.98
(2 H, s), 6.36 (1 H, s), 6.91-7.49 (10 H, m); 13C NMR (100 MHz, CDCl3): δ = 33.7, 115.2, 120.9, 123.5, 127.6, 128.0, 129.0, 129.4, 133.3, 139.4, 148.2, 152.2. Anal. Calcd for C16H13Cl3N2: C, 56.58; H, 3.86; N, 8.25; Cl 31.31. Found: 56.63; H, 3.79; 8.26; 31.23. 3a: 1H NMR (400 MHz, CDCl3): δ = 6.81 (2 H, s), 6.91-7.62 (15 H, m); 13C NMR (100 MHz, CDCl3): δ = 122.1, 124.0, 125.4, 127.3, 128.4, 128.8, 134.5, 149.0, 157.2. Anal. Calcd for C22H17N3: C, 81.71; H, 5.36; N, 12.99. Found: C, 81.58; H, 5.36; N, 13.06.
Spectral data for 2 and 3. 2b: 1H NMR (400 MHz, CDCl3): δ = 2.33 (3 H, s), 2.40 (3 H, s), 3.98 (2 H, s), 6.33 (1 H, s), 6.73-7.40 (8 H, m); 13C NMR (100 MHz, CDCl3): δ = 21.4, 33.8, 114.9, 117.9, 121.6, 124.3, 124.7, 128.1, 128.7, 128.8, 129.1, 133.4, 138.8, 139.3, 139.4, 148.3, 152.1. Anal. Calcd for C18H17Cl3N2: C, 58.80; H, 4.66; N, 7.62; Cl 28.93. Found: C, 58.72; H, 4.58; N, 7.73; Cl, 28.86. 3b: 1H NMR (400 MHz, CDCl3): δ = 2.37 (6 H, s), 2.45 (3 H, s), 5.29 (2 H, s), 6.79-7.41 (12 H, m); 13C NMR (100 MHz, CDCl3):
δ = 21.3, 21.5, 119.0, 122.8, 124.6, 125.3, 125.6, 128.3, 128.5, 129.1, 134.4, 138.5, 149.1, 157.2. Anal. Calcd for C25H23N3: C, 82.16; H, 6.34; N, 11.50. Found: C, 82.10; H, 6.39; N, 11.45. 2c: 1H NMR (400 MHz, CDCl3): δ = 2.32 (3 H, s), 2.39 (3 H, s), 3.95 (2 H, s), 6.34 (1 H, s), 6.83-7.35 (8 H, m); 13C NMR (100 MHz, CDCl3): δ = 20.8, 21.2, 33.6, 114.7, 120.8, 127.6, 129.4, 130.0, 132.8, 133.4, 136.7, 138.0, 145.8, 152.3. Anal. Calcd for C18H17Cl3N2: C, 58.80; H, 4.66; N, 7.62; Cl 28.93. Found: C, 58.54; H, 4.70; N, 7.68; Cl, 29.00. 3c: 1H NMR (400 MHz, CDCl3): δ = 2.34 (6 H, s), 2.39 (3 H, s), 5.29 (2 H, s), 6.82-7.47 (12 H, m); 13C NMR (100 MHz, CDCl3): δ = 20.8, 21.2, 121.7, 122.0, 125.1, 128.2, 129.3, 129.5, 126.6, 131.9, 133.3, 137.1, 146.7, 157.3. Anal. Calcd for C25H23N3: C, 82.16; H, 6.34; N, 11.50. Found: C, 82.14; H, 6.38; N, 11.60. 2d: 1H NMR (400 MHz, CDCl3): δ = 3.95 (2 H, s), 6.38 (1 H, s), 6.82-7.43 (8 H, m); 13C NMR (100 MHz, CDCl3): δ = 33.5, 115.9, 122.2, 128.8, 129.1, 129.7, 132.7, 133.9, 137.7, 146.5, 152.5. Anal. Calcd for C16H11Cl5N2: C, 47.04; H, 2.71; N, 6.86; Cl 43.39. Found: C, 47.08; H, 2.80; N, 6.92; Cl, 43.34. 3d: 1H NMR (400 MHz, CDCl3): δ = 5.30 (2 H, s), 6.82-7.48 (12 H, m); 13C NMR (100 MHz, CDCl3): δ = 122.5, 122.7, 125.2, 126.3, 128.3, 128.8, 138.0, 146.4, 153.5. Anal. Calcd for C22H14Cl3N3: C, 61.92; H, 3.31; N, 9.85; Cl, 24.92. Found: C, 61.83; H, 3.28; N, 9.74; Cl, 24.80. 2e: 1H NMR (400 MHz, CDCl3): δ = 3.77 (3 H, s), 3.80 (3 H, s), 3.92 (2 H, s), 6.87 (1 H, s), 6.93-7.42 (8 H, m); 13C NMR (100 MHz, CDCl3): δ = 33.3, 55.2, 55.3, 114.0, 114.4, 121.9, 129.3, 131.6, 133.4, 141.5, 152.5, 155.8, 159.1. Anal. Calcd for C18H17Cl3N2O2: C, 54.09; H, 4.29; N, 7.01; Cl 26.61. Found: C, 53.97; H, 4.20; N, 7.10; Cl, 26.53. 3e: 1H NMR (400 MHz, CDCl3): δ = 3.78 (9 H, s), 3.81 (2 H, s), 6.83-7.48 (12 H, m); 13C NMR (100 MHz, CDCl3): δ = 55.2, 55.3, 65.7, 113.9, 114.1, 123.1, 124.9, 127.3, 129.6, 142.5, 156.4, 157.4, 158.4. Anal. Calcd for C25H23N3O3: C, 72.62; H, 5.61; N, 10.16. Found: C, 72.74; H, 5.50; N, 10.24.

10

Crystallographic data for the structures 2a and 3a have been deposited with the Cambridge Crystallographic Data Center and allocated the deposition numbers CCDC 188398 and CCDC 188399, respectively. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, (UK) [fax:+44(1223)336033 or e-mail: deposit@ccdc.cam.ac.uk].

11

Structurally related amidines have already been synthesized via reaction of N-substituted amides with POCl3 [12] or PCl5. [12b] [13]