References
1
Hopf H.
Witulski B.
Modern
Acetylene Chemistry
Stang PJ.
Diederich F.
VCH;
Weinheim:
1995.
p.48
2a
Dehmlow EV.
Dehmlow SS.
Phase Transfer Catalysis
3rd
ed.:
Verlag Chemie;
Weinheim:
1993.
2b
Starks CM.
Liotta CL.
Halpern M.
Phase-transfer Catalysis
Chapman
and Hall;
New York London:
1994.
2c
Mkosza M.
FedoryÒski M. In Handbook of Phase Transfer Catalysis
Sasson Y.
Neumann R.
Blackie Academic
and Professional;
London:
1997.
p.135
3a
JoÒczyk A.
Gierczak AH.
Synthesis
1998,
962
3b
JoÒ
czyk A.
Gierczak AH.
Tetrahedron
2000,
56:
6083
4
Pielichowski J.
Bogda D.
Polish J. Chem.
1988,
40:
483
5a
Pielichowski J.
Bogda D.
Liebigs
Ann. Chem.
1988,
595
5b
Pielichowski J.
Bogda D.
Bull. Acad. Pol. Sci., Chim.
1989,
37:
123 ; Chem. Abstr. 1990, 112, 198222
6
Martynov AV.
Mirskova AN.
Kalikhman ID.
Voronkov MG.
Zh.
Org. Khim.
1988,
24:
509 ; Chem. Abstr. 1989, 110, 153824
7 JoÒczyk,
A.; Michalski, K., manuscript in preparation.
8
Pielichowski J.
Popielarz R.
Tetrahedron
1984,
40:
2671
9
Experimental Procedure:
Amide 1a (0.73 g, 6 mmol), diethyl ether
(15 mL), cyclohexane (5 mL), TRI (1.58 g, ca 1.1 mL, 12 mmol) and
TBAHS (0.02 g, 0.06 mmol) were vigorously stirred while 50% aq
NaOH (4.8 g, 3.2 mL, 60 mmol) was added dropwise at 20-25 °C.
After addition, the reaction was carried out for 15 min, the mixture
was poured into the ice with water, the phases were separated, the
water phase was extracted with CH2Cl2 (5 × 20
mL), the combined organic extracts were dried (MgSO4)
and concentrated. The products 2a and 3a were isolated by column chromatography [Merck
silica gel 60 (230-400 mesh), eluent CH2Cl2]. 2a:
1H NMR (400 MHz,
CDCl3): δ = 3.98
(2 H, s),
6.36 (1 H, s), 6.91-7.49 (10 H, m); 13C
NMR (100 MHz, CDCl3): δ = 33.7, 115.2,
120.9, 123.5, 127.6, 128.0, 129.0, 129.4, 133.3, 139.4, 148.2, 152.2.
Anal. Calcd for C16H13Cl3N2:
C, 56.58; H, 3.86; N, 8.25; Cl 31.31. Found: 56.63; H, 3.79; 8.26;
31.23. 3a: 1H NMR (400
MHz, CDCl3): δ = 6.81 (2 H, s), 6.91-7.62
(15 H, m); 13C NMR (100 MHz, CDCl3): δ = 122.1,
124.0, 125.4, 127.3, 128.4, 128.8, 134.5, 149.0, 157.2. Anal. Calcd
for C22H17N3: C, 81.71; H, 5.36;
N, 12.99. Found: C, 81.58; H, 5.36; N, 13.06.
Spectral
data for 2 and 3. 2b:
1H NMR (400 MHz,
CDCl3): δ = 2.33 (3 H, s), 2.40 (3
H, s), 3.98 (2 H, s), 6.33 (1 H, s), 6.73-7.40 (8 H, m); 13C
NMR (100 MHz, CDCl3): δ = 21.4, 33.8,
114.9, 117.9, 121.6, 124.3, 124.7, 128.1, 128.7, 128.8, 129.1, 133.4,
138.8, 139.3, 139.4, 148.3, 152.1. Anal. Calcd for C18H17Cl3N2:
C, 58.80; H, 4.66; N, 7.62; Cl 28.93. Found: C, 58.72; H, 4.58;
N, 7.73; Cl, 28.86. 3b: 1H
NMR (400 MHz, CDCl3): δ = 2.37 (6 H,
s), 2.45 (3 H, s), 5.29 (2 H, s), 6.79-7.41 (12 H, m); 13C
NMR (100 MHz, CDCl3):
δ = 21.3,
21.5, 119.0, 122.8, 124.6, 125.3, 125.6, 128.3, 128.5, 129.1, 134.4,
138.5, 149.1, 157.2. Anal. Calcd for C25H23N3:
C, 82.16; H, 6.34; N, 11.50. Found: C, 82.10; H, 6.39; N, 11.45. 2c:
1H NMR (400 MHz,
CDCl3): δ = 2.32 (3 H, s), 2.39 (3
H, s), 3.95 (2 H, s), 6.34 (1 H, s), 6.83-7.35 (8 H, m); 13C
NMR (100 MHz, CDCl3): δ = 20.8, 21.2,
33.6, 114.7, 120.8, 127.6, 129.4, 130.0, 132.8, 133.4, 136.7, 138.0,
145.8, 152.3. Anal. Calcd for C18H17Cl3N2:
C, 58.80; H, 4.66; N, 7.62; Cl 28.93. Found: C, 58.54; H, 4.70;
N, 7.68; Cl, 29.00. 3c: 1H
NMR (400 MHz, CDCl3): δ = 2.34 (6 H,
s), 2.39 (3 H, s), 5.29 (2 H, s), 6.82-7.47 (12 H, m); 13C NMR
(100 MHz, CDCl3): δ = 20.8, 21.2, 121.7,
122.0, 125.1, 128.2, 129.3, 129.5, 126.6, 131.9, 133.3, 137.1, 146.7,
157.3. Anal. Calcd for C25H23N3:
C, 82.16; H, 6.34; N, 11.50. Found: C, 82.14; H, 6.38; N, 11.60. 2d:
1H NMR (400 MHz,
CDCl3): δ = 3.95 (2 H, s), 6.38 (1
H, s), 6.82-7.43 (8 H, m); 13C
NMR (100 MHz, CDCl3): δ = 33.5, 115.9, 122.2,
128.8, 129.1, 129.7, 132.7, 133.9, 137.7, 146.5, 152.5. Anal. Calcd
for C16H11Cl5N2: C,
47.04; H, 2.71; N, 6.86; Cl 43.39. Found: C, 47.08; H, 2.80; N,
6.92; Cl, 43.34. 3d: 1H
NMR (400 MHz, CDCl3): δ = 5.30 (2 H,
s), 6.82-7.48 (12 H, m); 13C
NMR (100 MHz, CDCl3): δ = 122.5, 122.7, 125.2,
126.3, 128.3, 128.8, 138.0, 146.4, 153.5. Anal. Calcd for C22H14Cl3N3:
C, 61.92; H, 3.31; N, 9.85; Cl, 24.92. Found: C, 61.83; H, 3.28;
N, 9.74; Cl, 24.80. 2e:
1H
NMR (400 MHz, CDCl3): δ = 3.77 (3 H,
s), 3.80 (3 H, s), 3.92 (2 H, s), 6.87 (1 H, s), 6.93-7.42
(8 H, m); 13C NMR (100 MHz, CDCl3): δ = 33.3,
55.2, 55.3, 114.0, 114.4, 121.9, 129.3, 131.6, 133.4, 141.5, 152.5,
155.8, 159.1. Anal. Calcd for C18H17Cl3N2O2:
C, 54.09; H, 4.29; N, 7.01; Cl 26.61. Found: C, 53.97; H, 4.20;
N, 7.10; Cl, 26.53. 3e: 1H
NMR (400 MHz, CDCl3): δ = 3.78 (9 H,
s), 3.81 (2 H, s), 6.83-7.48 (12 H, m); 13C
NMR (100 MHz, CDCl3): δ = 55.2, 55.3,
65.7, 113.9, 114.1, 123.1, 124.9, 127.3, 129.6, 142.5, 156.4, 157.4,
158.4. Anal. Calcd for C25H23N3O3:
C, 72.62; H, 5.61; N, 10.16. Found: C, 72.74; H, 5.50; N, 10.24.
10 Crystallographic data for the structures 2a and 3a have
been deposited with the Cambridge Crystallographic Data Center and
allocated the deposition numbers CCDC 188398 and CCDC 188399, respectively.
Copies of the data can be obtained, free of charge, on application
to CCDC, 12 Union Road, Cambridge CB2 1EZ, (UK) [fax:+44(1223)336033
or e-mail: deposit@ccdc.cam.ac.uk].
11 Structurally related amidines have
already been synthesized via reaction of N-substituted amides with
POCl3
[12]
or PCl5.
[12b]
[13]
12a
Fukuda M.
Okamoto Y.
Sakurai H.
Bull. Chem. Soc. Jpn.
1977,
50:
1895
12b
Prajznar B.
Rocz.
Chem.
1962,
36:
1449 ; Chem. Abstr.
1963,
59, 5139.
13a
Von Braun J.
Jostes F.
Heymons A.
Chem. Ber.
1927,
60:
92
13b
Yamagida S.
Fujita T.
Ohoka M.
Katagiri I.
Miyabe M.
Komori S.
Bull. Chem. Soc. Jpn.
1973,
46:
303
13c
Meth-Cohn O.
Westwood KT.
J. Chem. Soc., Perkin
Trans. 1
1983,
2089
14 Only a few structures, related to
azacyclic products 3, are described: Anwar M.
Abdel-Hay FI.
Fahmy M.
Rev. Roum. Chim.
1978,
23:
1085 ; Chem. Abstr. 1979, 90, 54899b
15
Speziale AJ.
Smith LR.
J. Am. Chem. Soc.
1962,
84:
1868
16 Aniline reacted with TRI at ca 120 °C
affording mixture of products: Shklyar SA.
Vestsi
Nats. Akad. Navuk Belarusi, Ser. Khim. Navuk
1972,
95 ; Chem. Abstr. 1973, 78, 15678
17
Pielichowski J.
Czub P.
Bull. Soc. Chim. Belg.
1995,
104:
407