Abstract
Inclusion complexes of cyclodextrin/cyclodextrin copolymer
and lanthanide tris(perfluorobutanesulfonyl)methide/bis(perfluorobutanesulfonyl)amide,
namely metallo-enzyme model, are efficient and recyclable
super Lewis acid catalysts, which can promote Diels-Alder
and Mukaiyama-aldol reactions in pure water.
Key words
cyclodextrin - Lewis acids - catalysis - lanthanides - aqueous reactions
References
<A NAME="RU03002ST-1A">1a </A>
Lewis Acids in Organic Synthesis
Yamamoto H.
Wiley-VCH;
Weinheim:
2000.
<A NAME="RU03002ST-1B">1b </A>
Santelli M.
Pons JM.
Lewis
Acid and Selectivity in Organic Synthesis
CRC
Press;
New York:
1996.
<A NAME="RU03002ST-1C">1c </A>
Selectivities
in Lewis Acid Promoted Reactions
Schinzer D.
Kluwer Academic Publishers;
Dordrecht:
1988.
<A NAME="RU03002ST-2A">2a </A>
Mikami K.
Nakai T. In
Kagaku Zokan
Vol. 124:
Kagaku
Dojin;
Tokyo:
1995.
p.177
<A NAME="RU03002ST-2B">2b </A>
Mikami K.
Terada M.
Matsuzawa H.
Angew.
Chem. Int. Ed.
2002,
41:
5000
<A NAME="RU03002ST-3">3 </A>
Pugin B.
Blaser H.-U. In
Comprehensive
Asymmetric Catalysis
Vol. 3:
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
Berlin:
1999.
p.1367
<A NAME="RU03002ST-4A">4a </A>
Lubineau A.
Auge J.
Top.
Curr. Chem.
1999,
206:
1
<A NAME="RU03002ST-4B">4b </A>
Sinou D.
Top.
Curr. Chem.
1999,
206:
41
<A NAME="RU03002ST-4C">4c </A>
Cornils B.
Top.
Curr. Chem.
1999,
206:
133
<A NAME="RU03002ST-4D">4d </A>
Organic
Reactions in Water
Grieco P.
Blackie
Academic and Professional;
London:
1998.
<A NAME="RU03002ST-4E">4e </A>
Li C.-J.
Chan T.-H.
Organic
Reactions in Aqueous Media
Wiley;
New
York:
1997.
<A NAME="RU03002ST-5A">5a </A>
Bender ML.
Komiyama M.
Cyclodextrin Chemistry
Springer-Verlag;
Berlin:
1978.
<A NAME="RU03002ST-5B">5b </A>
Shannon RD.
Acta Crystallogr., Sect. A
1976,
32:
751
<A NAME="RU03002ST-6">6 </A>
Szejtli J.
Cyclodextrin
and Their Inclusion Complexes
Akademiai;
Kiado:
1982.
<A NAME="RU03002ST-7">7 </A>
Cyclodextrin
Toda F.
Ueno A.
Sangyo-Tosho;
Tokyo:
1995.
<A NAME="RU03002ST-8A">8a </A>
Comprehensive
Supramolecular Chemistry
Vol. 3:
Szejtli J.
Osa T.
Pergamon;
Oxford:
1996.
<A NAME="RU03002ST-8B">8b </A>
Tsuruta H.
Yamaguchi K.
Imamoto T.
Chem. Commun.
1999,
1703
<A NAME="RU03002ST-9">9 </A>
Koppel IA.
Taft RW.
Anvina F.
Zhu S.-Z.
Hu L.-Q.
Sung KS.
DesMarteau DD.
Yagupolskii LM.
Yagupolsukii YL.
Kondratenko NV.
Volkonskii AY.
Vlasov VM.
Notario R.
Maria P.-C.
J. Am. Chem. Soc.
1994,
116:
3047
<A NAME="RU03002ST-10">10 </A>
Horvath IT.
Rabai J.
Science
1994,
266:
72
<A NAME="RU03002ST-11">11 </A>
Gladysz JA.
Science
1994,
266:
55
<A NAME="RU03002ST-12">12 </A>
Curran DP.
Angew.
Chem. Int. Ed.
1998,
37:
1174
<A NAME="RU03002ST-13A">13a </A> Sc-
and Yb[N(SO2 C4 F9 )2 ]3 :
Nishikido J.
Nakajima H.
Saeki T.
Ishii A.
Mikami K.
Synlett
1998,
1347
<A NAME="RU03002ST-13B">13b </A>
Mikami K.
Kotera O.
Motoyama Y.
Sakaguchi H.
Synlett
1996,
171
<A NAME="RU03002ST-13C">13c </A> Sc- and Yb[C(SO2 C8 F17 )3 ]3 :
Mikami K.
Mikami Y.
Matsumoto Y.
Nishikido J.
Yamamoto F.
Nakajima H.
Tetrahedron
Lett.
2001,
42:
289
<A NAME="RU03002ST-13D">13d </A> Yb[C(SO2 C6 F13 )2 SO2 C8 F17 ]3 :
Barret AGM.
Braddock DC.
Catterick D.
Henshke JP.
McKinnell PM.
Synlett
2000,
847
<A NAME="RU03002ST-14">14 </A> Recently, it was reported that CD
forms inclusion complexes with fluorocarbon surfactants, due to
hydrophobic interaction:
Wilson LD.
Verrall RE.
J. Phys. Chem. B
1997,
101:
9270
<A NAME="RU03002ST-15A">15a </A>
Zhang B.
Breslow R.
J.
Am. Chem. Soc.
1997,
119:
1676
<A NAME="RU03002ST-15B">15b </A>
Otto S.
Engberts JBFN.
Kwak JCT.
J. Am. Chem. Soc.
1998,
120:
9517
<A NAME="RU03002ST-15C">15c </A>
Tian H.-Y.
Chen Y.-J.
Wang D.
Zeng C.-C.
Li C.-J.
Tetrahedron
Lett.
2000,
41:
2529
<A NAME="RU03002ST-15D">15d </A>
Manabe K.
Mori Y.
Wakabayashi T.
Nagayama S.
Kobayashi S.
J.
Am. Chem. Soc.
2000,
122:
7202
<A NAME="RU03002ST-16">16 </A>
Comm. available from Aldrich Chemical
Company, Inc.: Cat. No. 33, 256-9.
<A NAME="RU03002ST-17">17 </A>
Williams DB.
Carter CB.
Transmission
Electron Microscopy
Plenum Press;
New
York:
1996.
<A NAME="RU03002ST-18">18 </A>
The full percentage of Ln complex/γ-CDP-Ln
complex was found to reach only 60% because of the steric
repulsion. Indeed, elemental analysis showed that CDP formed a 59% inclusion
complex of Ln(C4 -methide)3 : Calcd Yb, 3.64%. Found:
Yb, 3.61%.
<A NAME="RU03002ST-19">19 </A>
Dias LC.
J.
Braz. Chem. Soc.
1997,
8:
289
<A NAME="RU03002ST-20">20 </A>
Kagan HB.
Riant O.
Chem. Rev.
1992,
92:
1007
<A NAME="RU03002ST-21">21 </A>
Rideout DC.
Breslow R.
J. Am. Chem. Soc.
1980,
102:
7816
<A NAME="RU03002ST-22">22 </A>
Breslow R.
Guo T.
J. Am. Chem. Soc.
1988,
110:
5613
<A NAME="RU03002ST-23">23 </A>
Nelson SG.
Tetrahedron:
Asymmetry
1998,
9:
357
<A NAME="RU03002ST-24">24 </A>
Bach T.
Angew.
Chem., Int. Ed. Engl.
1994,
33:
417