Abstract
Inclusion complexes of cyclodextrin/cyclodextrin copolymer
and lanthanide tris(perfluorobutanesulfonyl)methide/bis(perfluorobutanesulfonyl)amide,
namely metallo-enzyme model, are efficient and recyclable
super Lewis acid catalysts, which can promote Diels-Alder
and Mukaiyama-aldol reactions in pure water.
Key words
cyclodextrin - Lewis acids - catalysis - lanthanides - aqueous reactions
References
1a
Lewis Acids in Organic Synthesis
Yamamoto H.
Wiley-VCH;
Weinheim:
2000.
1b
Santelli M.
Pons JM.
Lewis
Acid and Selectivity in Organic Synthesis
CRC
Press;
New York:
1996.
1c
Selectivities
in Lewis Acid Promoted Reactions
Schinzer D.
Kluwer Academic Publishers;
Dordrecht:
1988.
2a
Mikami K.
Nakai T. In
Kagaku Zokan
Vol. 124:
Kagaku
Dojin;
Tokyo:
1995.
p.177
2b
Mikami K.
Terada M.
Matsuzawa H.
Angew.
Chem. Int. Ed.
2002,
41:
5000
3
Pugin B.
Blaser H.-U. In
Comprehensive
Asymmetric Catalysis
Vol. 3:
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
Berlin:
1999.
p.1367
4a
Lubineau A.
Auge J.
Top.
Curr. Chem.
1999,
206:
1
4b
Sinou D.
Top.
Curr. Chem.
1999,
206:
41
4c
Cornils B.
Top.
Curr. Chem.
1999,
206:
133
4d
Organic
Reactions in Water
Grieco P.
Blackie
Academic and Professional;
London:
1998.
4e
Li C.-J.
Chan T.-H.
Organic
Reactions in Aqueous Media
Wiley;
New
York:
1997.
5a
Bender ML.
Komiyama M.
Cyclodextrin Chemistry
Springer-Verlag;
Berlin:
1978.
5b
Shannon RD.
Acta Crystallogr., Sect. A
1976,
32:
751
6
Szejtli J.
Cyclodextrin
and Their Inclusion Complexes
Akademiai;
Kiado:
1982.
7
Cyclodextrin
Toda F.
Ueno A.
Sangyo-Tosho;
Tokyo:
1995.
8a
Comprehensive
Supramolecular Chemistry
Vol. 3:
Szejtli J.
Osa T.
Pergamon;
Oxford:
1996.
8b
Tsuruta H.
Yamaguchi K.
Imamoto T.
Chem. Commun.
1999,
1703
9
Koppel IA.
Taft RW.
Anvina F.
Zhu S.-Z.
Hu L.-Q.
Sung KS.
DesMarteau DD.
Yagupolskii LM.
Yagupolsukii YL.
Kondratenko NV.
Volkonskii AY.
Vlasov VM.
Notario R.
Maria P.-C.
J. Am. Chem. Soc.
1994,
116:
3047
10
Horvath IT.
Rabai J.
Science
1994,
266:
72
11
Gladysz JA.
Science
1994,
266:
55
12
Curran DP.
Angew.
Chem. Int. Ed.
1998,
37:
1174
13a Sc-
and Yb[N(SO2 C4 F9 )2 ]3 : Nishikido J.
Nakajima H.
Saeki T.
Ishii A.
Mikami K.
Synlett
1998,
1347
13b
Mikami K.
Kotera O.
Motoyama Y.
Sakaguchi H.
Synlett
1996,
171
13c Sc- and Yb[C(SO2 C8 F17 )3 ]3 : Mikami K.
Mikami Y.
Matsumoto Y.
Nishikido J.
Yamamoto F.
Nakajima H.
Tetrahedron
Lett.
2001,
42:
289
13d Yb[C(SO2 C6 F13 )2 SO2 C8 F17 ]3 : Barret AGM.
Braddock DC.
Catterick D.
Henshke JP.
McKinnell PM.
Synlett
2000,
847
14 Recently, it was reported that CD
forms inclusion complexes with fluorocarbon surfactants, due to
hydrophobic interaction: Wilson LD.
Verrall RE.
J. Phys. Chem. B
1997,
101:
9270
15a
Zhang B.
Breslow R.
J.
Am. Chem. Soc.
1997,
119:
1676
15b
Otto S.
Engberts JBFN.
Kwak JCT.
J. Am. Chem. Soc.
1998,
120:
9517
15c
Tian H.-Y.
Chen Y.-J.
Wang D.
Zeng C.-C.
Li C.-J.
Tetrahedron
Lett.
2000,
41:
2529
15d
Manabe K.
Mori Y.
Wakabayashi T.
Nagayama S.
Kobayashi S.
J.
Am. Chem. Soc.
2000,
122:
7202
16 Comm. available from Aldrich Chemical
Company, Inc.: Cat. No. 33, 256-9.
17
Williams DB.
Carter CB.
Transmission
Electron Microscopy
Plenum Press;
New
York:
1996.
18 The full percentage of Ln complex/γ-CDP-Ln
complex was found to reach only 60% because of the steric
repulsion. Indeed, elemental analysis showed that CDP formed a 59% inclusion
complex of Ln(C4 -methide)3 : Calcd Yb, 3.64%. Found:
Yb, 3.61%.
19
Dias LC.
J.
Braz. Chem. Soc.
1997,
8:
289
20
Kagan HB.
Riant O.
Chem. Rev.
1992,
92:
1007
21
Rideout DC.
Breslow R.
J. Am. Chem. Soc.
1980,
102:
7816
22
Breslow R.
Guo T.
J. Am. Chem. Soc.
1988,
110:
5613
23
Nelson SG.
Tetrahedron:
Asymmetry
1998,
9:
357
24
Bach T.
Angew.
Chem., Int. Ed. Engl.
1994,
33:
417