Subscribe to RSS
DOI: 10.1055/s-2002-35594
Synthesis of N-Acetyl-1,3-dimethyltetrahydroisoquinolines by Intramolecular Amidomercuration: Stereochemical Aspects
Publication History
Publication Date:
20 November 2002 (online)
Abstract
Mercury(II)-mediated ring closure of N-[1-(2-allyl-3-benzyloxy-4,6-dimethoxyphenyl)ethyl]acetamide 4 afforded N-acetyl-5-benzyloxy-6,8-dimethoxy-1,3-trans-dimethyl-1,2,3,4-tetrahydroisoquinoline 3. The product was shown to exist as a mixture of rotamers by NMR spectroscopy, since signals coalesced at higher temperatures. 2-[2-[1-(Acetylamino)ethyl]-6-(benzyloxy)-3,5-dimethoxyphenyl]-1-methylethyl methanesulfonate 8 was also cyclized with sodium hydride to afford rotameric products with the same isoquinoline skeleton, but as a mixture of 1,3-cis- and trans-dimethyl isomers.
Key words
amidomercuration - cyclization - isoquinoline - Mitsunobu - rotamers
-
1a
The Chemistry and Biology of Isoquinoline Alkaloids
Philipson JD.Roberts MF.Zenk MH. Springer-Verlag; Berlin: 1985. -
1b For a recent example see:
Iwasa K.Moriyasu M.Tachibana Y.Kim H.-S.Wataya Y.Wiegrebe W.Bastow KF.Cosentino LM.Kozuka M.Lee K.-H. Bioorg. Med. Chem. 2001, 9: 2871 - 2
Bringmann G.Pokorny F. In The Alkaloids. Chemistry and Pharmacology Vol. 46:Cordell GA. Academic Press; San Diego: 1995. Chap. 4. p.127-271 - Some recent representative syntheses and references therein:
-
3a
Bringmann G.Götz R.Keller PA.Walter R.Boyd MR.Lang F.Garcia A.Walsh JJ.Tellitu I.Bhaskar KV.Kelly TR. J. Org. Chem. 1998, 63: 1090 -
3b
Hobbs PD.Upender V.Dawson MI. Synlett 1997, 965 -
3c
Hoye TR.Chen M.Mi L.Priest OP. J. Org. Chem. 1999, 64: 7184 -
3d
Lipshutz BH.Keith JM. Angew Chem. Int. Ed. 1999, 38: 3530 -
3e
Rizzacasa MA.Sargent MV. J. Chem. Soc., Perkin Trans. 1 1991, 2773 - Some recent examples from groups working in the area:
-
4a
Bringmann G.Wenzel M.Kelly TR.Boyd MR.Gulakowski RJ.Kaminsky R. Tetrahedron 1999, 55: 1731 -
4b
Bringmann G.Holenz J.Weirich R.Rübenacker M.Funke C.Boyd MR.Gulakowski RJ.François G. Tetrahedron 1998, 54: 497 -
4c
Bringmann G.Saeb W.Kraus J.Brun R.François G. Tetrahedron 2000, 56: 3523 -
4d
Bringmann G.Tasler S. Tetrahedron 2001, 57: 331 -
4e
Rao AVR.Gurjar MK.Ramana DV.Chheda AK. Heterocycles 1996, 43: 1 -
4f
Zhang H.Zembower DE.Chen Z. Bioorg. Med. Chem. Lett. 1997, 7: 2687 -
4g
Upender V.Pollart DJ.Liu J.Hobbs PD.Olsen C.Chao W.-R.Bowden B.Crase JL.Thomas DW.Pandey A.Lawson JA.Dawson MI. J. Hetero-cycl. Chem. 1996, 33: 1371 -
4h
de Koning CB.Michael JP.van Otterlo WAL. Tetrahedron Lett. 1999, 40: 3037 -
4i
de Koning CB.Michael JP.van Otterlo WAL. J. Chem. Soc., Perkin Trans. 1 2000, 799 -
5a
Bringmann G.Weirich R.Reuscher H.Jansen JR.Kinzinger L.Ortmann T. Liebigs Ann. Chem. 1993, 877 -
5b
Hoye TR.Chen M. Tetrahedron Lett. 1996, 37: 3099 -
5c
Watanabe T.Uemura M. Chem. Commun. 1998, 871 - 6
Bringmann G.Götz R.Harmsen S.Holenz J.Walter R. Liebigs Ann. Chem. 1996, 2045 - 7
Toda J.Matsumoto S.Saitoh T.Sano T. Chem. Pharm. Bull. 2000, 48: 91 -
9a
Kametani T. In The Total Synthesis of Natural Products Vol. 3:ApSimon J. John Wiley and Sons, Inc.; New York: 1977. p.1-272 -
9b
Rozwadowska MD. Heterocycles 1994, 39: 903 -
10a
Mitsunobu O.Wada M.Sano T. J. Am. Chem. Soc. 1972, 94: 679 -
10b A review:
Mitsunobu O. Synthesis 1981, 1 -
10c See also:
Hughes DL. Org. React. 1992, 42: 335 - 11
Wolfe S.Hasan SK. Can. J. Chem. 1970, 48: 3572 - 13
Kometani T.Takeuchi Y.Yoshii E. J. Chem. Soc., Perkin Trans. 1 1981, 1197 -
14a
Larock RC. In Solvomercuration/Demercuration Reactions in Organic Synthesis Springer-Verlag; Berlin: 1986. Chap. VI. p.443-521 -
14b
Larock RC. In Comprehensive Organometallic Chemistry II Vol. 11:McKillop A. Elsevier Science Ltd.; Amsterdam: 1995. Chap. 9. p.389-459 -
14c
Wilson SR.Sawicki RA. J. Org. Chem. 1979, 44: 330 -
14d
Barluenga J.Jimènez C.Nájera C.Yus M. J. Chem. Soc., Chem. Commun. 1981, 670 -
14e
Takahata H.Bandoh H.Momose T. Heterocyles 1995, 41: 1797 - 15 For a related example using PhSeCl
see:
Clive DCL.Farina V.Singh A.Wong CK.Kiel WA.Menchen SM. J. Org. Chem. 1980, 45: 2120 - 18 Example of rotational isomers in
tetrahydroisoquinolines due to N-acetyl
and N-formyl substituents:
Bringmann G.Holenz J.Wiesen B.Nugroho BW.Proksch P. J. Nat. Prod. 1997, 60: 342 - 21
Hoffmann RW. Chem. Rev. 1989, 89: 1841
References
This work is taken from the PhD thesis of W. A. L. van Otterlo, University of the Witwatersrand, 1999.
12
Spectroscopic
Data for 4. 1H NMR (400 MHz; CDCl3): δ = 7.47-7.26
(5 H, m, 5 × PhH), 6.79 (1 H, br d, J = 9.3
Hz, NH), 6.49 (1 H, s, 5-H), 6.01-5.93 (1 H, m, 2′-H),
5.46-5.42 (1 H, m, CHCH3),
5.02-4.85 (2 H, m, 3′-H), 4.91 (1 H, d,
J = 10.8 Hz, OCH2),
4.86 (1 H, d, J = 10.8, OCH2),
3.90 (3 H, s, OCH3), 3.87 (3 H, s, OCH3),
3.64-3.63 (2 H, m, 1′-H), 1.92 (3 H, s, COCH3),
1.40 (3 H, d, J = 6.9 Hz, CHCH
3). 13C NMR
(100.63 MHz; CDCl3): δ = 168.4 (C=O),
154.4, 152.1, 140.2 (3 × ArC-O), 137.9 (ArC-C),
136.9 (2′-C), 132.5 (ArC-C), 128.2, 127.8,
127.6 (3 × PhC), 122.2 (ArC-C), 115.4 (3¢-C),
96.2 (5-C), 74.9 (OCH2), 55.9, 55.6 (2 × OCH3),
43.7 (CHCH3), 30.7 (1′-C),
23.6 (COCH3), 20.9 (CHCH3). IR (thin film): νmax = 3331
br (N-H st), 2876 m (C-H st, O-CH2),
2837 m (C-H st, O-CH3), 1637 vs (C=O st),
1597 (ArC=C st) cm-1; MS (EI): m/z = M+ 369.1933 (C22H27NO4 requires
369.1940), 369 (M+, 14%) 326(1), 278(77),
219(86) 204(16), 193(84), 189(16), 91(40), 43(16).
Hg(OAc)2 (0.27 g, 0.85 mmol, 1.5 mol equiv) was added to amide 4 (0.19 g, 0.51 mmol) dissolved in THF (10 cm3). The yellow mixture was then stirred, in the dark, under argon for 21 h at 25 ºC. A further portion of Hg(OAc)2 (0.18 g, 0.51 mmol, 1 mol equiv) was added and the mixture was stirred for a further 18 h. A mixture of NaBH4 (0.049 g, 1.3 mmol, 2.5 mol equiv) in aq NaOH (5 cm3, 2.5 M) was then added whilst stirring. After stirring for a further 1 h a sat. aq Na2CO3 solution (5 cm3) was added and the mixture was stirred for 20 min. The reaction was allowed to stand for 30 min and the THF was removed under reduced pressure. Sat. brine solution (10 cm3) and Et2O (10 cm3) were added and the mixture was extracted with diethyl ether (3 × 10 cm3). The organic extracts were combined, filtered through alu-mina to remove traces of Hg, dried (MgSO4) and evaporated in vacuo. Preparative layer chromatography on silica gel (EtOAc-hexane-aq NH4OH, 66:33:1) afforded the 1,3-trans-dimethyl cyclized product 3 (0.11 g, 56%) as a light yellow oil.
17The product 3 showed
two distinct sets of signals in its 1H NMR spectrum,
indicating rotamers about the amide C-N bond. Spectroscopic Data for 3. 1H
NMR (400 MHz; CDCl3): δ = 7.43-7.32
(10 H, m, 10 × PhH), 6.44 (1 H, s,
7-H), 6.43
(1 H, s, 7-H), 5.50 (1 H, q, J = 6.4
Hz, 1-H), 5.16 (1 H, q, J = 6.6
Hz, 1-H), 4.95-4.86 (4 H, m, 2 × OCH2), 4.68-4.62
(1 H, m, 3-H), 4.23-4.15 (1 H, m, 3-H), 3.91 (6 H, s, 2 × OCH3),
3.86 (3 H, s, OCH3), 3.82 (3 H, s, OCH3),
2.99 (2 H, dd, J = 15.2 and
2.4 Hz, 4-H pseudo-equatorial), 2.64-2.54
(2 H, m, 2 × 4-H pseudo-axial),
2.24 (3 H, s, COCH3), 2.17 (3 H, s, COCH3),
1.28 (6 H, d, J = 6.6 Hz, 2 × 1-CH3), 0.84
(3 H, d, J = 6.2 Hz, 3-CH3),
0.83 (3 H, d, J = 6.1 Hz,
3-CH3); 13C
NMR (50.32 MHz; CDCl3): δ = 170.0,
169.7 (2 × NCOCH3),
151.9, 151.5, 151.4, 150.7, 138.9, 139.0 (6 × ArC-O),
137.6, 137.5, 129.0 (3 × ArC-C), 128.5, 128.5, 128.3,
128.0 (4 × PhC), 119.5, 118.6 (2 × ArC-C),
95.2, 94.9 (2 × 7-C), 75.2 (OCH2), 55.9, 55.6,
55.6 (3 × OCH3), 49.1, 46.7 (2 × 1-C),
46.3, 44.4 (2 × 3-C), 28.6, 27.8 (2 × 4-C), 23.3,
22.3, 22.3, 21.3, 20.9, 19.2 (6 × CH3). IR (thin
film): νmax = 2820 m (C-H
st, OCH3), 1635 vs (C=O st), 1583 m (ArC = C
st) cm-1; MS (EI): m/z = M+ 369.1931
(C22H27NO4 requires 369.1940),
369 (M+, 20%) 354(83), 278(95), 263(9),
219(78), 193(100), 91(34), 43(16).
Heating compound 3 in an NMR tube in toluene-d
8 up to 90 °C
resulted in coalescence of the two sets of signals. Characteristic
chemical shifts in the 1H NMR spectrum: δ = 2.99
ppm (doublet of doublets, J = 15.2
and 2.4 Hz) and δ = 2.64-2.54 ppm (multiplet)
for the pseudo-equatorial and pseudo-axial protons at C-4 respectively.
Four sets of signals corresponding to the two protons at C-1 and
C-3 were also clearly visible as quartets at δ = 5.50
(J = 6.4 Hz) and 5.16
(J = 6.6 Hz) ppm and as multiplets
at δ = 4.68-4.62 and 4.23-4.15
ppm respectively. The 13C NMR spectrum
also showed two characteristic sets of resonances: at δ = 49.1
and 46.7 (C-1) ppm, δ = 46.3 and 44.4 (C-3) ppm
and δ = 28.6 and 27.8 (C-4) ppm.
de Koning, C. B.; Michael, J. P.; van Otterlo, W. A. L., unpublished results.
20For isomer 3, the C-1 methyl substituent showed an NOE with the H-4 pseudo-axial proton, indicating that the C-1 methyl substituent must be pseudo-axial. For the cis-isomer 9 the same NOE was seen, as well as an NOE between the 1-methyl and 3-methyl substituents, thereby fixing the cis-arrangement. Therefore in isomer 3 the C-1 methyl and C-3 methyl groups must be trans.
22NaH (60% in oil, 0.03 g, 0.86 mmol, 10 mol equiv) was added to mesylate 8 (0.040 g, 0.086 mmol), dissolved in anhyd THF (10 cm3), under an argon atmosphere. The reaction mixture was stirred for 18 h, after which the mixture was cooled to 0 ºC. Water (10 cm3) was added dropwise and the mixture was extracted with diethyl ether (2 × 10 cm3). The organic solvent was washed with brine (10 cm3), dried and concentrated in vacuo. Preparative layer chromato-graphy on silica gel (EtOAc-hexane-aq NH4OH, 66:33:1) afforded an equimolar mixture of the 1,3-trans-dimethyl product 3, its 1,3-cis-dimethyl isomer 9 (0.027 g, 85%) as rotamers about the N-Ac bond.