Subscribe to RSS
DOI: 10.1055/s-2003-36236
A Concise Synthesis of (-)-Codonopsinine and an Approach to Synthesis of (+)-Hyacinthacines A1 and A2 from a Polyhydroxylated Cyclic Nitrone
Publication History
Publication Date:
18 December 2002 (online)

Abstract
Synthesis of (-)-codonopsinine (2) was accomplished in seven steps that involved an addition of five-membered cyclic nitrone 1, readily obtained from l-xylose, with the Grignard reagent. Nitrone 1 also underwent intermolecular cycloaddition with several α,β-unsaturated esters 12 to afford cycloadducts 13, one of which, 13c, was elaborated to the key intermediate 17 for (+)-hyacinthacines A1 (3a) and A2 (3b).
Key words
cyclic nitrone - nucleophilic addition - cycloaddition - total synthesis - natural products
-
1a
Watson AA.Fleet GWJ.Asano N.Molyneux RJ.Nash RJ. Phytochemistry 2001, 56: 265 -
1b
Asano N.Nash RJ.Molyneux RJ.Fleet GWJ. Tetrahedron: Asymmetry 2000, 11: 1645 -
2a
Shibano M.Tsukamoto D.Kusano G. Heterocycles 2002, 57: 1539 -
2b
Nash RJ.Fellows LE.Dring JV.Fleet GWJ.Girdhar A.Ramsden NG.Peach JM.Hegarty MP.Scofield AM. Phytochemistry 1990, 29: 111 -
2c
Harris CM.Harris TM.Molyneux RJ.Tropea JE.Elbein AD. Tetrahedron Lett. 1989, 30: 5685 -
2d
Nash RJ.Fellows LE.Plant AC.Fleet GWJ.Derome AE.Baird PD.Hegarty MP.Scofield AM. Tetrahedron 1988, 44: 5959 - For recent reviews of syntheses of pyrrolidine and pyrrolizidine alkaloids, see:
-
3a
Liddell JR. Nat. Prod. Rep. 1999, 16: 499 -
3b
Michael JP. Nat. Prod. Rep. 1997, 14: 619 -
3c
Robins DJ. Nat. Prod. Rep. 1995, 12: 413 -
3d For leading references,
see:
Hulme AN.Rosser EM. Org. Lett. 2002, 4: 265 -
3e See also:
Cordero FM.Pisaneschi F.Gensini M.Goti A.Brandi A. Eur. J. Org. Chem. 2002, 1941 -
3f See also:
Severino EA.Correia CRD. Org. Lett. 2000, 2: 3039 -
3g See also:
Cordero FM.Gensini M.Goti A.Brandi A. Org. Lett. 2000, 2: 2475 -
3h See also:
Yoda H.Asai F.Takabe K. Synlett 2000, 1001 -
3i See also:
Yoda H.Katoh H.Takabe K. Tetrahedron Lett. 2000, 41: 7661 -
3j See also:
Ahn J.-B.Yun C.-S.Kim KH.Ha D.-C. J. Org. Chem. 2000, 65: 9249 -
3k See also:
Pearson WH.Hines JV. J. Org. Chem. 2000, 65: 5785 -
3l See also:
Denmark SE.Herbert B. J. Org. Chem. 2000, 65: 2887 -
3m See also:
Denmark SE.Hurd AR. Org. Lett. 1999, 1: 1311 -
4a
Behr J.-B.Erard A.Guillerm G. Eur. J. Org. Chem. 2002, 1256 -
4b
Izquierdo I.Plaza MT.Robles R.Franco F. Tetrahedron: Asymmetry 2001, 12: 2481 -
4c
Person WH.Guo L. Tetrahedron Lett. 2001, 42: 8267 -
4d
Pearson WH.Hembre EJ. Tetrahedron Lett. 2001, 42: 8273 -
4e
Gallos JK.Sarli VC.Koftis TV.Coutouli-Argyropoulou E. Tetrahedron Lett. 2000, 41: 4819 -
5a
Matkhalikova SF.Malikov VM.Yunusov SYu. Khim. Prir. Soedin. 1969, 5: 607 ; Chem. Abstr. 1970, 73, 25712d -
5b
Khanov MT.Sultanov MB.Egorova TA. Farmakol. Alkaloidov Serdech. Glikoyidov. 1971, 210 ; Chem. Abstr. 1972, 77, 135091r -
5c For recent syntheses of codonopsinine
and codonopsine, see:
Yoda H.Nakajima T.Takabe K. Tetrahedron Lett. 1996, 37: 5531 -
5d See also:
Wang C.-LJ.Calabrese JC. J. Org. Chem. 1991, 56: 4341 -
5e See further:
Iida H.Yamazaki N.Kibayashi C. J. Org. Chem. 1987, 52: 1956 ; see also ref. 3f -
6a
Asano N.Kuroi H.Ikeda K.Kizu H.Kameda Y.Kato A.Adachi I.Watson AA.Nash RJ.Fleet GWJ. Tetrahedron: Asymmetry 2000, 11: 1 -
6b For the first synthesis
of (-)-3b, see:
Rambaud L.Compain P.Martin OR. Tetrahedron: Asymmetry 2001, 12: 1807 - 7
Tamura O.Toyao A.Ishibashi H. Synlett 2002, 1344 -
8a
Lim MH.Kim HO.Moon HR.Chun MW.Jeong LS. Org. Lett. 2002, 4: 529 -
8b
Jeong LS.Moon HR.Choi YJ.Chun MW.Kim HO. J. Org. Chem. 1998, 63: 4821 -
10a The
exclusive formation of compound 8 can be
explained by nucleophilic addition of the Grignard reagent from
the less-hindered side and/or formation of a rigid chelated complex
between 1 and MgX2, see:
Portolés R.Murga J.Falomir E.Carda M.Uriel S.Marco JA. Synlett 2002, 711 -
10b For a review of nucleophilic
addition to nitrones, see:
Lombardo M.Trombini C. Synthesis 2000, 759 - For recent reviews of cycloaddition of nitrones, see:
-
13a
Broggini G.Zecchi G. Synthesis 1999, 905 -
13b
Gothelf KV.Jørgensen KA. Chem. Rev. 1998, 98: 863 - 15
Barton DHR.Dorchak J.Jaszberenyi JC. Tetrahedron 1992, 48: 7435
References
Analytical Data of Compound 1: [α]D 28 -13.0 (c 0.50, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 3.33 (3 H, s), 3.74 (1 H, dd, J = 2.9, 10.3 Hz), 3.99 (1 H, m), 4.35 (1 H, dd, J = 4.9, 10.3 Hz), 4.36 (1 H, br dd, J = 2.5, 3.9 Hz), 4.51 (1 H, d, J = 12.2 Hz), 4.58 (1 H, d, J = 11.7 Hz), 4.61 (1 H, d, J = 12.2 Hz), 4.63 (1 H, d, J = 11.7 Hz), 4.66 (1 H, d, J = 7.3 Hz), 4.68 (1 H, d, J = 7.3 Hz), 4.70 (1 H, br t, J = 2.5 Hz), 6.96 (1 H, br s), 7.25-7.35 (10 H, m). 13C NMR (125 MHz, CDCl3): δ = 55.7, 65.9, 72.0, 73.5, 77.3, 80.8, 81.8, 96.4, 127.6, 127.7, 127.8, 128.1, 128.3, 128.5, 133.4, 137.2, 137.7.
11Analytical Data of Compound 8: 1H NMR (500 MHz, CDCl3): δ = 3.11 (3 H, s), 3.64 (1 H, m), 3.72 (1 H, dd, J = 7.3, 9.3 Hz), 3.77 (3 H, s), 3.83 (1 H, dd, J = 4.2, 9.3 Hz), 4.05 (1 H, dd, J = 2.9, 3.4 Hz), 4.12 (1 H, d, J = 7.3 Hz), 4.25 (1 H, dd, J = 3.4, 7.3 Hz), 4.42 (1 H, d, J = 6.4 Hz), 4.51-4.63 (5 H, m), 5.28 (1 H, br s), 6.86 (2 H, d, J = 8.3 Hz), 7.25-7.50 (12 H, m). 13C NMR (125 MHz, CDCl3): δ = 55.2, 55.3, 67.0, 68.8, 71.7, 73.4, 73.5, 83.9, 84.6, 95.6, 113.8, 127.6, 127.7, 127.9, 128.3, 128.4, 129.7, 130.8, 138.2, 138.3, 159.3.
12Analytical Data of Compound (-)-2: Mp 173-174 °C (MeOH), [α]D 28 -13.2 (c 0.3, MeOH) [lit. [5a] mp 169-170 °C, [α]D 20 -8.8 (c 0.1, MeOH), lit. [5c] [α]D 20 -11.8 (c 0.69, MeOH)]. 1H NMR (500 MHz, pyridine-d 5 ): δ = 1.32 (3 H, d, J = 6.8 Hz), 2.21 (3 H, s), 3.66 (3 H, s), 3.68 (1 H, qd, J = 3.9, 6.8 Hz), 4.02 (1 H, br d, J = 6.4 Hz), 4.37 (1 H, br t, J = 3.9 Hz), 4.61 (1 H, br dd, J = 3.9, 6.4 Hz), 6.96 (2 H, J = 8.3 Hz), 7.60 (2 H, d, J = 8.3 Hz). Two protons of hydroxyl groups were not observed in this spectrum. The 1H NMR spectral data of our synthetic (-)-2 are identical with those previously reported. [3f] [5e]
14Analytical Data of Compound 13c: 1H NMR (500 MHz, CDCl3): δ = 1.47 (9 H, s), 2.55 (2 H, br t, J = 7.3 Hz), 3.33 (1 H, m), 3.34 (3 H, s), 3.61 (1 H, dd, J = 6.4, 10.3 Hz), 3.71 (1 H, dd, J = 4.4, 10.3 Hz), 3.74 (1 H, dt, J = 3.9, 7.3 Hz), 4.01 (1 H, dd, J = 3.9, 5.9 Hz), 4.07 (1 H, br t, J = 3.9 Hz), 4.53 (1 H, t, J = 7.3 Hz), 4.55 (1 H, d, J = 12.2 Hz), 4.58 (2 H, br s), 4.60 (1 H, d, J = 12.2 Hz), 4.61 (1 H, d, J = 6.8 Hz), 4.63 (1 H, d, J = 6.8 Hz), 7.25-7.31 (10 H, m). 13C NMR (125 MHz, CDCl3): δ = 28.0, 37.8, 55.6, 68.3, 69.8, 70.1, 72.3, 73.4, 75.5, 82.0, 84.3, 85.1, 96.0, 127.5, 127.7, 127.8, 128.2, 128.3, 138.0, 138.3, 169.5.
16The stereochemistry of compound 15 was established by its NOE difference spectrum shown below.
17Amide 16 was also obtained from 13c′ via three similar steps.
18Analytical Data of Compound (-)-17: [α]D 31 -64.1 (c 0.16, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 1.81-1.89 (1 H, m), 2.33-2.39 (2 H, m), 2.62 (1 H, br ddd, J = 8.8, 10.7, 16.6 Hz), 3.20 (1 H, br s), 3.64 (1 H, br dd, J = 2.9, 9.8 Hz), 3.70 (1 H, br dd, J = 3.9, 9.8 Hz), 3.81-3.84 (2 H, m), 4.05 (1 H, br t, J = 2.9 Hz), 4.17 (1 H, br q, J = 2.9 Hz), 4.49 (1 H, br d, J = 11.7 Hz), 4.51 (1 H, br d, J = 11.2 Hz), 4.57 (1 H, br d, J = 11.2 Hz), 4.59 (1 H, br d, J = 11.7 Hz), 7.26-7.36 (10 H, m). 13C NMR (125 MHz, CDCl3): δ = 26.3, 33.2, 59.4, 67.5, 71.0, 71.9, 73.8, 81.4, 89.2, 127.7, 127.8, 127.9, 128.1, 128.5, 128.6, 137.6, 138.1, 176.6.