References
1
Biard JF.
Guyot S.
Roussakis C.
Verbist JF.
Vercauteren J.
Weber JF.
Boukef K.
Tetrahedron
Lett.
1994,
35:
2691
2
Juge M.
Grimaud N.
Biard JF.
Sauviat MP.
Nabil M.
Verbist JF.
Petit JY.
Toxicon
2001,
39:
1231
3a
Pearson WH.
Ren Y.
J.
Org. Chem.
1999,
64:
688
3b
Werner KM.
De los Santos JM.
Weinreb SM.
Shang M.
J.
Org. Chem.
1999,
64:
4865
3c
Abe H.
Aoyagi S.
Kibayashi C.
J.
Am. Chem. Soc.
2000,
122:
4583
3d
Maeng JH.
Funk RL.
Org.
Lett.
2001,
3:
3511
4
Sun P.
Sun C.
Weinreb SM.
J.
Org. Chem.
2002,
67:
4337
5a
Golden JE.
Aubé J.
Chemtracts
1999,
12:
1026
5b
Snider BB.
Lin H.
J. Am. Chem.
Soc.
1999,
121:
7778
5c
Scheffler G.
Seike H.
Sorensen EJ.
Angew. Chem.
Int. Ed.
2000,
39:
4593
5d
Ousmer M.
Braun NA.
Ciufolini MA.
Org. Lett.
2001,
3:
765
5e
Funk RL.
Maeng JH.
Org.
Lett.
2001,
3:
1125
5f
Wardrop DJ.
Zhang W.
Org. Lett.
2001,
3:
2353
6a
Snider BB.
Lin H.
Org.
Lett.
2000,
2:
643
6b
Wardrop DJ.
Basak A.
Org. Lett.
2001,
3:
1053
6c
Mizutani H.
Takayama J.
Soeda Y.
Honda T.
Tetrahedron Lett.
2002,
43:
2411
6d
Nagumo S.
Nishida A.
Yamazaki C.
Matoba A.
Murashige K.
Kawahara N.
Tetrahedron
2002,
58:
4917
7a
Kuehne ME.
Horne DA.
J. Org. Chem.
1975,
40:
1287
7b
Fujimoto RA.
Boxer J.
Jackson RH.
Simke JP.
Neale RF.
Snowhill EW.
Barbaz BJ.
Williams M.
Sills MA.
J.
Med. Chem.
1989,
32:
1259
7c
Kawase M.
Kitamura T.
Kikugawa Y.
J.
Org. Chem.
1989,
54:
3394
7d
Sawamura M.
Nakayama Y.
Tang W.-M.
Ito Y.
J. Org. Chem.
1996,
61:
9090
7e
Bagley MC.
Oppolzer W.
Tetrahedron:
Asymmetry
2000,
11:
2625
8a
Jones RCF.
Patience JM.
J. Chem. Soc., Perkin Trans. 1
1990,
2350
8b
Gill GB.
James GD.
Oates KV.
Pattenden G.
J.
Chem. Soc., Perkin Trans. 1
1993,
2567
9
Reuschling D.
Pietsch H.
Linkies A.
Tetrahedron
Lett.
1978,
615
10a
Casiraghi G.
Rassu G.
Synthesis
1995,
607
10b
Rassu G.
Carta P.
Pinna L.
Battistini L.
Zanardi F.
Acquotti D.
Casiraghi G.
Eur. J.
Org. Chem.
1999,
6:
1395
10c
Rassu G.
Zanardi F.
Battistini L.
Casiraghi G.
Chem. Soc. Rev.
2000,
29:
109
11
Jones RCF.
Bates AD.
Tetrahedron
Lett.
1986,
27:
5285
12 The following experimental
procedure for conversion of 3b to 4 applies: The substrate 3b (0.73g,
3mmol) was dissolved in anhyd THF (30 mL) under N2 and
cooled to -78 °C. A solution of n-BuLi
in hexane (2.25 mL of a 1.6 M solution, 3.6 mmol, 1.2 equiv) was
added dropwise. After stirring for 30 min at -78 °C
TMSCl (0.57 mL, 4.5 mmol, 1.5 equiv) was added dropwise and the
solution was stirred for a further 30 min at -78 °C.
Trimethyl orthoformate (1.00 mL, 9.0 mmol, 3 equiv) was then added,
followed by BF3·OEt2 (0.57 mL, 4.5
mmol, 1.5 equiv). The reaction was allowed to slowly warm to -20 °C
over 2 h. Sat. NaHCO3 solution was then added and the
THF was removed by evaporation. The remaining aqueous layer was
extracted with 3 portions of EtOAc. The organic layers were combined,
dried and concentrated to give an oily residue. The product was isolated
by column chromatography to give the acetal as an oil that slowly
crystallised as a colourless, waxy solid 4 (0.699
g, 2.20 mmol) in 88% yield based on recovered starting
material (0.125 g, 0.51 mmol). Data for 4:
IR: νmax (CH2Cl2) = 3019,
1669, 1640, 1346 cm-1. Found: M+ (+ H), 318.17144.
C18H24NO4 requires M+:
318.17053. 1H NMR (400 MHz, CDCl3): δ = 2.37
(1 H, ddt, J = 1.1, 7.7, 14.7
Hz, CH
2), 2.54 (1 H, dd, J = 6.6, 14.7 Hz, CH
2), 3.27 (3 H, s, OCH
3), 3.32 (3 H, s, OCH
3), 3.75 (3 H, s, OCH
3), 4.21 (1 H, s, OCHO), 4.61 (2 H, s, PhCH
2),
4.84 (2 H, m, CH=CH
2), 5.12
(1 H, s, H-3), 5.18 (1 H, m, CH=CH2),
7.15-7.38 (5 H, m, aromatic). 13C
NMR (100 MHz, CDCl3): δ = 33.8 (CH2), 43.6 (PhCH2), 57.8, 57.9 and 58.0
(3 × OCH3),
71.8 (C-5), 95.2 (C-3), 107.6 (OCHO),
118.6 (CH=CH2), 126.6,
128.0 and 128.5 (aromatic), 130.9 (CH=CH2),
139.6 (aromatic), 172.2 (C-4), 174.5 (C=O).
13
Sanford MS.
Ulman M.
Grubbs RH.
J.
Am. Chem. Soc.
2001,
123:
749
14 Fischer R, Graff A, Bretschneider T, Erdelen C, Drewes MW, and Feucht D. inventors; WO Patent 2001023354.
15
Laffan DP.
Baenziger M.
Duc L.
Evans AR.
McGarrity JF.
Meul T.
Helv. Chim.
Acta
1992,
75:
892
16 Prepared from the phosphonium bromide
in ref.
[17b]
by treatment
with KOH.
Prepared from the bromide:
17a
Kozikowski AP.
Stein PD.
J.
Org. Chem.
1984,
49:
2301
17b
Ziegler FE.
Klein SI.
Pati UK.
Wang T.-F.
J.
Am. Chem. Soc.
1985,
107:
2730
18
Hoffman RV.
Bishop RD.
Fitch PM.
Hardenstein R.
J. Org.
Chem.
1980,
45:
917
19
Yoda H.
Kitayama H.
Katagiri T.
Takabe K.
Tetrahedron: Asymmetry
1993,
4:
1455
20a
Aubé J.
Milligan GL.
J. Am. Chem. Soc.
1991,
113:
8965
20b Data for the trans diastereomer 11a, (7aS
*,11aS
*)-Decahydro-3H-pyrrolo[2,1-j]quinolin-3-one:
IR: νmax (CH2Cl2) = 2935,
2864,1674, 1418 cm-1. Found: M+, 193.14725.
C12H19NO requires M+:
193.14666. 1H NMR (400 MHz, CDCl3): δ = 1.11-1.39
(4 H, m, CH
2), 1.41-1.87 (10
H, m, CH
2), 1.93 (1 H, dd, J = 7.7, 12.3 Hz, CH2),
2.20 (1 H, dd, J = 8.8, 16.5
Hz, H-2), 2.49 (1 H, dddd, J = 0.9,
7.9, 12.6, 16.5 Hz, H-2), 2.77 (1 H, dddd, J = 1.1,
7.0, 11.2, 13.7 Hz, H-5), 3.88 (1 H, dd, J = 8.4,
13.7 Hz, H-5). 13C NMR (75 MHz, CDCl3): δ = 21.4
(CH2), 22.5 (CH2),
23.5 (CH2), 24.9 (CH2), 26.0 (CH2),
27.4 (CH2), 30.6 (CH2), 33.3 (C-5), 33.8 (C-2),
42.1 (C-7a), 64.1 (C-11a), 175.9 (C=O).
Several papers have appeared on
asymmetric synthesis of 5,5-disubstituted pyrrolidin-2-ones:
21a
Uno H.
Baldwin JE.
Russell AT.
J. Am. Chem. Soc.
1994,
116:
2139
21b
Nagasaka T.
Imai T.
Heterocycles
1995,
41:
1927
21c
Nagasaka T.
Imai T.
Chem. Pharm. Bull.
1997,
45:
36
21d
Langlois N.
Choudhury PK.
Tetrahedron Lett.
1999,
40:
2525
21e
Schuch CM.
Pilli RA.
Tetrahedron: Asymmetry
2000,
11:
753
21f
Choudhury PK.
Le Nguyen B.
Langlois N.
Tetrahedron Lett.
2002,
43:
463