Subscribe to RSS
DOI: 10.1055/s-2003-37126
Design, Synthesis, and Self-Assembly of Parallel Cyclobolaphile that Contains Four Amide Groups as a Linkage between Polar Head Groups and Hydrocarbon Chain: A Mimetic of Archaeal Membrane Lipid
Publication History
Publication Date:
07 February 2003 (online)
![](https://www.thieme-connect.de/media/synlett/200303/lookinside/thumbnails/10.1055-s-2003-37126-1.jpg)
Abstract
Chiral 52-membered macrocyclic compound has been synthesized by utilizing intramolecular cyclization under Eglinton conditions [Cu(OAc)2, pyridine]. Three structural features include: (i) two hydrocarbon chains containing diacetylene, (ii) a linkage that is composed of amide group, and (iii) two polar head groups. Self-assembly of this compound in a mixture of chloroform-methanol (1:1) produced organogel. Transmission electron micrograph revealed that UV-irradiated gel is featured by nanosize helicity.
Key words
archaeal lipid - diacetylene - mimetic - amide - helical ribbon - nanostructure - polymerization - organogel
-
1a
Schnur JM. Science 1993, 262: 1669 -
1b
Spector MS.Price RR.Schnur JM. Adv. Mater. 1999, 11: 337 -
1c
Schnur JM.Ratna BR.Selinger JV.Singh A.Jyothi G.Easwaran RK. Science 1994, 264: 945 -
1d
Selinger JV.Schnur JM. Phys. Rev. Lett. 1993, 71: 4091 -
1e
Spector MS.Selinger JV.Singh A.Rodriguez JM.Price RP.Schnur JM. Langmuir 1998, 14: 3493 -
1f
Spector MS.Singh A.Messersmith PB.Schnur JM. Nano Lett. 2001, 1: 375 -
2a
Kushwaha SC.Kates M.Sprott GD.Smith ICP. Biochim. Biophys. Acta 1981, 664: 156 -
2b
Comita PB.Gagosian RB.Pang H.Costello CE. J. Biol. Chem. 1984, 254: 15234 -
2c
Eguchi T.Arakawa K.Terachi T.Kakinuma K. J. Org. Chem. 1997, 62: 1924 -
2d
Eguchi T.Ibaragi K.Kakinuma K. J. Org. Chem. 1998, 63: 2689 -
2e
Aoki T.Poulter CD. J. Org. Chem. 1985, 50: 5634 -
2f
Menger FM.Chen XY. Tetrahedron Lett. 1996, 37: 323 -
2g
Eguchi T.Kano H.Kakinuma K. J. Chem. Soc., Chem. Commun. 1996, 365 -
3a
Amphiphilic molecules containing a polar head group at the end of a hydrophobic segment have been termed; ‘bolaamphiphiles’ or ‘bolaphile’. While amphiphiles having a macrocyclic ring as a hydrophobic segment have been termed ‘macrocyclic bolaamphiphiles’ (see ref. [2f] ), we prefer to adopt the abbreviated and more readily pronounce-able term, ‘cyclobolaphile’.
-
3b For ‘bolaamphiphiles’ see:
Fuhrhop J.-H.Mathiewu J. Angew. Chem., Int. Ed. Engl. 1984, 23: 100 -
3c For ‘bolaphiles’ see:
Jayasuriya N.Bosak S.Regen SL. J. Am. Chem. Soc. 1990, 112: 5844 - 4 On the analogy of the definition
of ‘parallel caldarchaeol’ and ‘antiparallel
caldarchaeol’ that have a parallel and antiparallel arrangement
of glycerol units, respectively, we term cyclobolaphile with a parallel
arrangement of glycerol units ‘parallel cyclobolaphile’,
and that with an antiparallel arrangement ‘antiparallel
cyclobolaphile’, see:
Gräther O.Arigoni D. J. Chem. Soc., Chem. Commun. 1995, 405 -
5a
Miyawaki K.Takagi T.Shibakami M. Synlett 2002, 1326 -
5b
Miyawaki K.Goto R.Takagi T.Shibakami M. Synlett 2002, 1467 -
6a
Hanabusa K.Yamada M.Kimura M.Shirai H. Angew. Chem., Int. Ed. Engl. 1996, 35: 1949 -
6b
Inoue K.Ono Y.Kanekiyo Y.Hanabusa K.Shinkai S. Chem. Lett. 1999, 429 -
6c
Hanabusa K.Okui K.Karaki K.Koyama T.Shirai H. J. Chem. Soc., Chem. Commun. 1992, 1371 -
6d
Loos MD.Esch JV.Stokroos I.Kellogg RM.Feringa BL. J. Am. Chem. Soc. 1997, 119: 12675 -
6e
Rowan AE.Nolte RJM. Angew. Chem. Int. Ed. 1998, 37: 63 -
6f
Terech P.Furman I.Weiss RG. J. Phys. Chem. 1995, 99: 9558 -
6g
Terech P.Weiss RG. Chem. Rev. 1997, 97: 3133 -
7a
Brown DA.London E. J. Membr. Biol. 1998, 164: 103 -
7b
Brown R. J. Cell. Sci. 1998, 111: 1 -
8a
Ostendorf M.Dijkink J.Rutjes FPJT.Hiemstra H. Eur. J. Org. Chem. 2000, 115 -
8b
Avenoza A.Cativiela C.Corzana F.Peregrina JM.Zurbano MM. Synthesis 1997, 1146 -
9a
Uenishi J.Hiraoka T.Yuyama K.Yonemitsu O. Heterocycles 2000, 52: 719 -
9b
Taylor EC.Macor JE.Pont JL. Tetrahedron 1987, 43: 5145 - 10
Hayashi Y.Kinoshita Y.Hidaka K.Kiso A.Uchibori H.Kimura T.Kiso Y. J. Org. Chem. 2001, 66: 5537 - 11
Jacobi PA.Murphree S.Rupprecht F.Zheng W. J. Org. Chem. 1996, 61: 2413 -
12a
Synthesis of 7: A solution of Cu(OAc)2 (138 mg, 0.762 mmol) and pyridine (56 mL) was stirred at 120 °C. To the reaction was then added a solution of 6 (100 mg, 0.076 mmol) in pyridine (5 mL) over 4 h at 120 °C. After cooling to r.t., pyridine was removed under reduced pressure. The resulting solution was allowed to stand at 120 °C for 11 h before the reaction mixture was quenched with sat. citric acid (50 mL), and then extracted with CHCl3 (300 mL × 2). The organic phase was washed with brine, dried (Na2SO4), and concentrated to give a residue. Purification of the residue was done by flash chromatography (SiO2, CHCl3-MeOH, 20:1) to give 55 mg (55%) of 7 as colorless solid.
-
12b
Collins SK.Yap GPA.Fallis AG. Angew. Chem. Int. Ed. 2000, 39: 385 -
13a
All new compounds gave satisfactory analytical and spectral data. Selected physical data are as follows. Compound 7: Stage colorless solid, [α]D 22+4.87 (c 1.80, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 7.63-7.60 (m, 8 H), 7.45-7.41 (m, 12 H), 6.27 (d, J = 7.6 Hz, 2 H), 5.93 (t, J = 5.5 Hz, 2 H), 4.10-4.00 (m, 2 H), 3.79 (dd, J = 10.3, 3.7 Hz, 2 H), 3.62-3.53 (m, 4 H), 3.33-3.29 (m, 2 H), 2.22 (t, J = 6.9 Hz, 8 H), 2.12-2.20 (m, 8 H), 1.60-1.43 (m, 16 H), 1.38-1.30 (m, 8 H), 1.29-1.20 (m, 24 H), 1.06 (s, 18 H) ppm. 13C NMR: δ = 174.53, 173.98, 135.54, 133.07, 132.74, 130.01, 127.92, 127.89, 77.43, 65.35, 63.59, 51.45, 41.94, 36.76, 36.60, 29.22, 29.18, 28.91, 28.76, 28.29, 26.90, 25.64, 25.59, 19.26, 19.17 ppm. LRMS (FAB): m/z = 1310 [M + H]+, 1252 [M - (CH3)3C]+. Compound 1: Stage colorless solid. 1H NMR [500 MHz, CDCl3/CD3OD (1:1,
v/v)]: δ = 7.37 (t, J = 5.9 Hz, 2 H), 7.10 (t, J = 7.9 Hz, 2 H), 3.73-3.65 (m, 2 H), 3.38 (dd, J = 11.6, 4.0 Hz, 2 H), 3.25 (dd, J = 11.6, 5.5 Hz, 2 H), 3.21-3.13 (m, 2 H), 3.12-3.04 (m, 2 H), 2.03 (t, J = 7.0 Hz, 8 H), 1.97 (t, J = 7.0 Hz, 8 H), 1.42-1.34 (m, 8 H), 1.33-1.26 (m, 8 H), 1.21-1.13 (m, 8 H), 1.12-1.05 (brs, 24 H) ppm. LRMS (FAB): m/z = 834 [M + H]+. Because compounds 7 and 1 were easy to be poly-merized by light, their elemental analyses could not be obtained as seen in analogous diacetylene compounds. -
13b
Wang G.Hollingsworth RI. Langmuir 1999, 15: 3062 -
15a
Lopez E.O’Brien DF.Whitesides TH. J. Am. Chem. Soc. 1982, 104: 305 -
15b
Pan JP.Charych D. Langmuir 1997, 13: 1365
References
Our synthetic scheme should provide optically pure compound 1. Our reason for this is 2-fold. First, the first step [8a] that can lead to racemization retained the stereochemical configuration of l-serine methyl ester hydrochloride {2: [α]D 21 +4.99 (c 3.55, CHCl3), Lit. [8a] [α]D +4.7 (c 1.2, CHCl3)}. Second, intermediates (2-7) and the desired product (1) do not include carbonyl group that can cause epimerization at the chiral center.