Subscribe to RSS
DOI: 10.1055/s-2003-38350
Synthesis of Polysubstituted Pyrrolidines from Cyclic Sulfate Esters and Enamines
Publication History
Publication Date:
28 March 2003 (online)

Abstract
The bis-lithium dianions of N-ethyl and N-aryl enamines of methyl acetoacetate react with cyclic sulfate esters of vic-diols to give tri- and tetrasubstituted pyrrolidine derivatives. The N-ethyl enamine of pentane-2,4-dione can also be converted to the corresponding pyrrolidine.
Key words
carbanions - cyclic sulfates - enamines - heterocycles - pyrrolidines
- 1
Lohray BB.Bushan VV. Adv. Heterocycl. Chem. 1997, 68: 89 -
2a
Wallis JD.Karrer A.Dunitz JD. Helv. Chim. Acta 1986, 69: 69 -
2b
Wallis JD.Dunitz JD. Acta Crystallogr., Sect. C 1988, 44: 1037 -
3a
Leurquin F.Ozturk T.Pilkington M.Wallis JD. J. Chem. Soc., Perkin Trans. 1 1997, 3173 -
3b
Saygili N.Brown RB.Day P.Hoelzl R.Kathirgamanathan P.Ozturk T.Pilkington M.Qayyum MMB.Turner SS.Vorwerg L.Wallis JD. Tetrahedron 2001, 57: 5015 - 4
Oi R.Sharpless KB. Tetrahedron Lett. 1991, 32: 999 - 5
Lohray BB.Gao Y.Sharpless KB. Tetrahedron Lett. 1989, 30: 2623 - 6
Richardson PF.Nelson LTJ.Sharpless KB. Tetrahedron Lett. 1995, 36: 9241 - 7
Gao Y.Sharpless KB. J. Am. Chem. Soc. 1988, 110: 7538 - 8
Burgess K.Li W. Tetrahedron Lett. 1995, 36: 2725 - 9
Hercouet A.Le Corre M.Carboni B. Tetrahedron Lett. 2000, 41: 197 - 10
Pound M.Davies DL.Pilkington M.Pina Vaz Sousa MM.Wallis JD. Tetrahedron Lett. 2002, 43: 1915 - 13
Bartoli G.Bosco M.Cimarelli C.Dalpozzo R.Palmieri G. J. Chem. Soc., Perkin Trans. 1 1992, 2095 - 15
Lygo B. Synlett 1993, 734 - 16
Sosnicki JG.Liebscher J. Synlett 1996, 1117 -
17a
Hodgkinson TJ.Kelland LR.Shipman M.Vile J. Tetrahedron 1998, 6029 -
17b
Mulzer J.List B.Bats JW. J. Am. Chem. Soc. 1997, 119: 5512 - 18
Hannick SM.Kishi Y. J. Org. Chem. 1983, 48: 3833 - 19
Khoukhi N.Vaultier M.Carrie R. Tetrahedron 1987, 43: 1811 - 20
Eskici M.Gallagher T. Synlett 2000, 1360
References
General Procedure: The
enamine (5.6 mmol) in THF (5 mL) was added slowly to freshly prepared
LDA (11.6 mmol) in THF (20 mL) at 0 °C under nitrogen.
The mixture was warmed to 30-35 °C for 30 min,
cooled to 0 °C and treated slowly with a solution of the
cyclic sulfate ester (5.8 mmol) in THF (5 mL), stirred at r.t. overnight,
and finally heated to reflux for 5 h. The THF was evaporated and
the residue partitioned between Et2O and H2O.
The aq phase was extracted with Et2O, the combined organic
phases were washed with brine, dried (MgSO4) and chromatographed using
cyclohexane/Et2O mixtures.
Compound 14: Yellow oil (0.60 g, 56%). 1H
NMR (CDCl3): δ = 4.43 (1 H, s, =CH),
3.55 (3 H, s, OCH3), 3.58 (1 H, m, 5-H), 3.07 (4 H, m,
3-H2 + NCH2), 2.04 (1 H, m, 4-Hα),
1.46 (1 H, m, 4-Hβ), 1.11 (3 H, d, J = 6.2 Hz,
5-CH3), 1.04 (3 H, t, J = 7.2
Hz, CH2CH
3). 13C
NMR (CDCl3): δ = 169.7 (2-C), 164.6
(C=O), 76.7 (=CH), 58.0 (5-C), 49.7 (OCH3),
38.3 (NCH2), 30.9 (3-C), 29.3 (4-C), 19.4 (5-CH3),
11.4 (CH2
CH3).
IR (liquid film): νmax = 2965, 2872,
1686, 1592, 1458, 1418, 1379, 1357, 1307, 1277, 1244, 1214, 1149, 1055,
956, 784 cm-1. HRMS (ES): [M + H]+ found 184.1340.
C10H18NO2 requires 184.1337.
Compound 15: Orange oil (0.20 g, 24%). 1H
NMR (CDCl3): δ = 7.33 (2 H, t, J = 7.8 Hz,
3′-,5′-H), 7.22 (1 H, t, J = 6.9
Hz, 4′-H), 7.05 (2 H, d, J = 7.9
Hz, 2′-,6′-H), 4.45 (1 H, s, =CH), 3.95
(1 H, m, 5-H), 3.49 (3 H, s, OCH3), 3.33 and 3.08 (2
H, 2 ¥ m, 3-H2), 2.24 and
1.62 (2 H, 2 ¥ m, 4-H2), 1.01
(3 H, d, J = 5.7
Hz, 5-CH3). 13C NMR (CDCl3): δ = 169.7
(2-C), 165.8 (C=O), 139.8 (1′-C), 129.5 and 127.2
(2′-,3′-,5′-,6′-C), 127.0 (4′-C),
80.1 (=CH), 60.7 (5-C), 49.9 (OCH3), 31.1 (3-C),
30.0 (4-C), 19.7 (5-CH3). IR (liquid film): νmax = 2969, 2944,
1688, 1607, 1579, 1495, 1454, 1434, 1398, 1309, 1284, 1210, 1186,
1135, 1050, 974, 797, 764, 698 cm-1. HRMS
(ES): [M + H]+ found
232.1339. C14H18NO2 requires 232.1337.
Compound 16: Yellow oil (0.43 g, 38%). 1H
NMR (CDCl3): δ = 4.41 (1 H, s, =CH),
3.55 (1 H, m, 5-H), 3.54 (3 H, s, OCH3), 3.18 (3 H, m,
NCH2 + 3-Hα), 2.55 (1 H,
m, 3-Hβ), 2.27 (1 H, m, 4-H), 1.05 (3 H, t, J = 7.2 Hz,
CH2CH
3), 0.94 (3
H, d, J = 6.7
Hz) and 0.90 (3 H, d, J = 6.9
Hz, 4, 5-CH3). 13C NMR (CDCl3): δ = 169.7
(2-C), 163.7 (C=O), 76.5 (=CH), 60.8 (5-C), 49.6
(OCH3), 38.5 (NCH2), 33.1 (4-C), 26.7 (3-C),
14.0 and 13.3 (4-,5-CH3),
11.4 (CH2
CH3).
IR (liquid film): νmax = 2970, 2877,
1687, 1593, 1466, 1423, 1380, 1355, 1301, 1239, 1189, 1144, 1117,
1057, 952, 784 cm-1. HRMS (ES): [M + H]+ found
198.1494. C11H20NO2 requires 198.1494.
Compound 17: Orange oil (0.82 g, 55%). 1H
NMR (CDCl3): δ = 7.29 (2 H, t, J = 7.4 Hz,
3′-5′-H), 7.16 (1 H, t, J = 7.3
Hz, 4′-H), 7.06 (2 H, d, J = 8.4
Hz, 2′-6′-H), 4.47 (1 H, t, J = 1.2 Hz, =CH),
3.89 (1 H, quintet, J = 6.7
Hz, 5-H), 3.47 (3 H, s, OCH3), 3.40 (1 H, ddd, J = 17.3,
7.8, 1.2 Hz, 3-H
α
),
2.78 (1 H, ddd, J = 17.3,
7.9, 1.2 Hz, 3-H
β
),
2.46 (1 H, m, 4-H), 0.96 (3 H, d, J = 7.2
Hz, 4-,5-CH3) and 0.86 (3 H, d, J = 6.7
Hz, 4-,5-CH3). 13C NMR (CDCl3): δ = 169.6
(2-C), 164.4 (C=O), 139.8 (1′-C), 129.3 and 127.0
(2′-,3′-,5′-,6′-C), 126.7 (4′-C), 80.1
(=CH), 63.4 (5-C), 49.7 (OCH3), 38.5 (4-C),
33.3 (3-C), 14.2 and 13.7 (4-,5-CH3). IR (liquid film): νmax = 2966, 2876,
1682, 1574, 1494, 1454, 1402, 1366, 1297, 1223, 1183, 1131, 1097,
1052, 955, 915, 797, 760, 699 cm-1. HRMS
(ES): [M + H]+ found
246.1495. C15H20NO2 requires 246.1494.
Compound 18: Yellow-orange rods (0.36 g, 38%),
mp 106-107 °C. 1H
NMR (CDCl3): δ = 7.47 (2 H, d, J = 8.1 Hz,
N-C6H4) and 7.44 (2 H, d, J = 6.7
Hz, N-C6H4), 7.28 (3 H, m, C6H5)
and 7.10 (2 H, d, J = 8.1
Hz, C6H5), 4.57 (1 H, s, =CH), 3.89
(1 H, quintet, J = 6.7
Hz, 5-H), 3.47 (3 H, s, OCH3), 3.41 (1 H, dd, J = 17.4,
7.9 Hz, 3-Hα), 2.77 (1 H, dd, J = 17.4,
8.1 Hz, 3-Hβ), 2.44 (1 H, q, J = 7.2
Hz, 4-H), 0.94 (3 H, d, J = 7.1
Hz, 4-,5-CH3) and 0.87 (3 H, d, J = 6.6
Hz, 4-,5-CH3). 13C NMR
(CDCl3): δ = 169.6 (2-C), 164.3 (C=O), 140.0,
139.5, 139.0, 128.6, 128.0, 127.3, 127.2, 126.8 (Ar-C12),
80.5 (=CH), 63.5 (5-C), 49.8 (OCH3), 38.5 (4-C),
33.4 (3-C), 14.2 and 13.8 (4-,5-CH3). IR (nujol mull): νmax 1679, 1612,
1581, 1513, 1270, 1186, 1140, 1109, 1092, 1086, 825, 808, 768, 726,
702, 576 cm-1. HRMS (ES): [M + H]+ found 322.1804.
C21H24NO2 requires 322.1807.
Crystal data: C21H23NO2, Mr = 321.4, monoclinic, a = 7.2995 (2), b = 15.5861 (4), c = 14.9417 (5) Å, β = 90.8073 (12), V = 1699.76 (9) ÅÅ3, Z = 4, P21/n, D c = 1.26 gcm-3, µ (MoKα) = 0.08 mm-1, T = 120 (2) K, 3879 unique reflections, 3027 with F>4σ(F), R = 0.058, wR = 0.141. Data deposited at the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ with reference CCDC 193354.
14
Procedure for
Synthesis of 19: 1.4 M MeLi (9 mL, 12.7 mmol) was slowly added
to a stirring solution of the enamine (5.6 mmol) and TMEDA (1.9
mL, 12.7 mmol) in THF at 0 °C under nitrogen. The mixture
was warmed to 30-35 °C and stirred for 2 h. A
solution of the cyclic sulfate ester (5.8 mmol) in THF (5 mL) was
slowly added at 0 °C and left to stir for 30 min DMF (15
mL) was added to dissolve the resulting precipitate and the mixture
was stirred at r.t. overnight, and then heated to ca.70 °C
for 5 h. Work-up as described.
[11]
Compound 19: Yellow oil (0.21 g, 24%). 1H
NMR (CDCl3): δ = 4.95 (1 H, s, =CH),
3.60 (1 H, m, 5-H), 3.12 (4 H, m, NCH2 + 3-H2),
2.05 (1 H, m, 4-Hα), 1.99 (3 H, s, O=C-CH3), 1.47
(1 H, m, 4-Hβ), 1.11 (3 H, d, J = 6.4
Hz, 5-CH3), 1.07 (3 H, t, J = 7.2
Hz, CH2CH3). 13C
NMR (CDCl3): δ = 193.9 (C=O),
164.6 (2-C), 89.0 (=CH), 58.3 (5-C), 38.3 (NCH2), 31.6
and 30.4 (3-,4-C), 29.1 (O=C-CH3),
19.2 (5-CH3), 11.4 (CH2
CH3). IR (liquid film): νmax 2969,
2875, 1641, 1551, 1469, 1377, 1355, 1309, 1276, 1202, 1177, 1130,
957, 902, 762, 681, 656, 588 cm-1.
HRMS (ES): [M + H]+ found 168.1386.
C10H18NO requires 168.1388.