RSS-Feed abonnieren
DOI: 10.1055/s-2003-39297
Ring-Opening of Lactones with Alkynyltrifluoroborates: A New Route to Functionalized α-Alkynones
Publikationsverlauf
Publikationsdatum:
20. Mai 2003 (online)

Abstract
Alkynyltrifluoroborate salts, readily generated in situ by the addition of BF3˙OEt2 to alkynyllithiums, were shown to mediate the regioselective acyl C-O ring cleavage of 5-, 6-, and 7-membered lactones. This novel, operationally simple and high yielding (85-99%) reaction allows a convenient and rapid access to α-alkynones substituted with valuable functional groups.
Key words
alkynes - lactones - ring-opening - alkynyltrifluoroborates - hydroxy α-alkynones
- 1
Perlmutter P. Conjugate Addition Reactions in Organic Synthesis, Tetrahedron Organic Chemistry Series Vol. 9: Pergamon Press; Oxford: 1992. p.339 - For recent examples, see:
-
2a
Arcadi A.Martinelli F.Rossi E. Tetrahedron 1999, 55: 13233 -
2b
Wang X.Tan J.Zhang L. Org. Lett. 2000, 2: 3107 -
2c
Jeevanandam A.Narkunan K.Ling Y.-C. J. Org. Chem. 2001, 66: 6014 -
2d
Kataoka T.Kinoshita H.Kinoshita S.Iwamura T. Tetrahedron Lett. 2002, 43: 7039 -
3a
Tam SY.-K.Klein RS.De las Haras FG.Fox JJ. J. Org. Chem. 1979, 44: 4854 -
3b
Adlington R.Baldwin JE.Pritchard GJ.Spencer KC. Tetrahedron Lett. 2000, 41: 575 ; and references cited therein -
4a
Midland MM.Nguyen NH. J. Org. Chem. 1981, 46: 4108 -
4b
Sayo N.Azuma K.-I.Mikama K.Nakai T. Tetrahedron Lett. 1984, 25: 565 -
5a
Babudri F.Fiandanese V.Hassan O.Punzi A.Naso F. Tetrahedron 1998, 54: 4327 -
5b
Hermitage SA.Roberts SM.Watson DJ. Tetrehedron Lett. 1998, 39: 3567 -
5c
Shimizu Y.Kiyota H.Oritani T. Tetrahedron Lett. 2000, 41: 3141 - For recent examples, see:
-
6a
Yu S.Li N.-S.Kabalka GW. J. Org. Chem. 1999, 64: 5822 -
6b
Reisser M.Maier A.Maas G. Synlett 2002, 1459 -
6c
Reddy MVR.Rearick JP.Hoch N.Ramachandran PV. Org. Lett. 2001, 3: 19 -
6d
Kataoka T.Kinoshita H.Kinoshita S.Iwamura T. Tetrahedron Lett. 2002, 43: 7039 -
7a
Tohda Y.Sonogashira K.Hagihara N. Synthesis 1977, 777 -
7b
Hauptman H.Mader M. Synthesis 1978, 307 -
7c
Verkruijsse HD.Heus-Kloos YA.Brandsma L. J. Orgmet. Chem. 1988, 289 -
8a
Brown HC.Racherla US.Singh SM. Tetrahedron Lett. 1984, 25: 2411 -
8b
Hegde VB.Renga JM.Owen JM. Tetrahedron Lett. 2001, 42: 1847 -
9a
Martin R.Romea P.Tey C.Urpi F.Vilarrasa J. Synlett 1997, 1414 -
9b
Jackson MM.Leverett C.Toczko JF.Roberts JC. J. Org. Chem. 2002, 67: 5032 -
10a
Chabala JC.Vincent JE. Tetrahedron Lett. 1978, 937 -
10b
Wedler C.Schick H. J. Prakt. Chem. 1993, 335: 410 -
10c
Kel’in AV.Gevorgyan V. J. Org. Chem. 2002, 67: 95 -
10d
Deslongchamps P.Rowan DD.Pothier N.Sauvé T.Saunders JK. Can. J. Chem. 1981, 59: 1105 -
10e
Tu YQ.Hübener A.Zhang H.Moore CJ.Fletcher MT.Hayes P.Dettner K.Francke W.McErlean CSP.Kitching W. Synthesis 2000, 1956 -
10f
Hayes P.Fletcher MT.Moore CJ.Kitching W. J. Org. Chem. 2001, 66: 2530 -
11a
Negishi EI.Bagheri V.Chatterjee S.Luo FT.Miller JA.Soll AT. Tetrahedron Lett. 1983, 24: 5181 -
11b
Logue MW.Teng K. J. Org. Chem. 1982, 47: 2549 -
11c
Kukusava N.Yamaguchi K.Kurita J.Tsuchiya T. Tetrahedron Lett. 2000, 41: 4143 -
11d
Grotjahn DB.Van S.Combs D.Lev DA.Schneider Ch.Rideout M.Meyer Ch.Hernandez G.Mejorado L. J. Org. Chem. 2002, 67: 9200 -
12a
Ramachandran PV.Teodorovic AV.Rangaishenvi MV.Brown HC. J. Org. Chem. 1992, 57: 2379 -
12b
Chowdhury C.Kundu NG. Tetrahedron 1999, 55: 7011 - For recent examples see:
-
13a
Li P.Fong WM.Chao LCF.Fung SHC.Williams ID. J. Org. Chem. 2001, 66: 4087 -
13b
Pérollier C.Sorokin AB. Chem. Commun. 2002, 1548 - 14
Arcadi A.Cacchi S.Marinelli F.Pace P.Sanzi G. Synlett 1995, 823 - 15
Larson DP.Heathcock CD. J. Org. Chem. 1997, 62: 8407 - 16
Masquelin T.Obrecht D. Synthesis 1995, 276 - 17
Palombi L.Arista L.Lattanzi A.Bonadies F.Scettri A. Tetrahedron Lett. 1996, 37: 7849 -
18a
Hermitage SA.Roberts SM.Watson DJ. Tetrahedron Lett. 1998, 39: 3567 -
18b
Serrat X.Cabarrocas G.Rafel S.Ventura M.Linden A.Villalgordo JM. Tetrahedron: Asymmetry 1999, 10: 3417 - 19
Katritzky AR.Lang H. J. Org. Chem. 1995, 60: 7612 -
20a
Rů˛ička J.Koutek B.Streinz L.aman D.Leetick L. Tetrahedron: Asymmetry 1999, 10: 3521 -
20b
Vrkočová P.Kalinová B.Valterová I.Koutek B. Talanta 2003, 59: 107 - 22
Yamamoto N.Isobe M. Tetrahedron 1993, 49: 6581 -
24a
Yamaguchi M.Shibato K.Fujiwara S.Hirao I. Synthesis 1986, 421 -
24b
Linderman RJ.Lonikar MS. J. Org. Chem. 1988, 53: 6013 -
24c
Ramachandran PV.Gong B.Teodorovic’ AV.Brown HC. Tetrahedron: Asymmetry 1994, 5: 1061 -
24d
Aubrecht KB.Winemiller MD.Collum DB. J. Am. Chem. Soc. 2000, 122: 11084 ; and the references cited therein -
25a
Darses S.Michaud G.Genet J.-P. Eur. J. Org. Chem. 1999, 1875 -
25b
Frohn H.-J.Adonin NY.Bardin VV.Starichenko VF. Tetrahedron Lett. 2002, 43: 8111 -
25c
Batey RA.Quach TD. Tetrahedron Lett. 2001, 42: 9099 -
25d
Molander GA.Katona BW.Machrouhi F. J. Org. Chem. 2002, 67: 8416 ; and references cited therein
References
Low yields of alkynone intermediates were observed when conditions analogous to those used in the original protocol were employed to transform lactones into spiroacetals. [10c] [d]
23
General Procedure
for the Synthesis of Alkynones 4: To a solution of alkyne 1 (8 mmol) in dry THF (25 ml) at -78 °C, n-BuLi (5 mL, 1.6 M, 8 mmol) was slowly
added, maintaining an argon atmosphere. The reaction mixture was stirred
for 20 min, allowed to warm to about -30 °C. The solution
was cooled to -78 °C again, and BF3˙Et2O
(1 mL, 7.9 mmol) was added dropwise. Stirring was continued for 10
min, and then lactone 3 (7.2 mmol) was
added in one portion via syringe. The resulting mixture was allowed
to warm to room temperature within 1 h, a solution of saturated NH4Cl-NH3(aq)
2:1 (5 mL) was added, the mixture was poured into water (50 mL),
and extracted with Et2O (4 × 25 mL). The combined
ethereal layers were washed with brine, dried briefly with MgSO4,
and evaporated to afford the crude product as a slightly yellow
oil. The crude material was purified by chromatography on silica
gel (hexane/10-30% EtOAc) to yield the
alkynone 4.
Selected
analytical data:4a: 1H NMR (200
MHz, CDCl3): δ = 1.72 (br s, 1 H),
1.91 (m, 2 H, CH2), 2.64 (m, 2 H, CH2), 2.68
(t, 2 H, J = 6.7 Hz), 3.64 (t,
2 H, J = 6.7 Hz), 3.65 (t, 2
H, J = 6.1 Hz), 4.56 (s, 2 H),
7.34 (m, 5 H). 13C NMR (100 MHz, CDCl3): δ = 20.44, 26.74,
42.08, 61.77, 67.12, 73.08, 81.33, 91.18, 127.70 (2 C), 127.83,
128.45 (2 C), 137.65, 187.82. IR (CHCl3): 3489 (br, OH),
2217 (C≡C), 1670 (C=O) cm-1.
GC-MS (EI); m/z (%):
246 (<1) [M+], 228
(2), 159 (5), 105 (8), 91 (100), 77(19), 65 (20).
4b: 1H NMR (200 MHz,
CDCl3): δ = 1.32 (d, 3 H, J = 6.2 Hz), 1.72 (bs, 1 H),
1.91 (m, 2 H, CH2), 2.61 (m, 2 H, CH2), 2.66
(m, 2 H, CH2), 3.65 (t, 2 H, J = 6.2
Hz), 3.75 (m, 1 H, CH), 4.54 (d, 1 H, J = 11.6
Hz), 4.60 (d, 1 H, J = 11.6
Hz), 7.34 (m, 5 H). 13C NMR (100 MHz,
CDCl3): δ = 19.73, 26.61, 26.76, 42.13,
61.77, 70.80, 72.57, 82.02, 91.20, 127.61 (2 C), 127.71, 128.42
(2 C), 138.09, 187.83. IR (CHCl3): 3472 (br, OH), 2216
(C≡C), 1670 (C=O) cm-1. GC-MS
(EI); m/z (%): 259
(<1) [M+ - 1],
198 (5), 169 (3), 105 (5), 91 (100), 77 (21), 65 (18).
4c: 1H NMR (200 MHz,
CDCl3): δ = 1.52 (d, 3 H, J = 6.7 Hz), 1.95 (tt, 2 H, J = 6.1 Hz and 6.9 Hz), 2.73
(t, 2 H, J = 6.9 Hz), 3.68 (t,
2 H, J = 6.1 Hz), 4.37 (q, 1
H, J = 6.7 Hz), 4.51 (d, 1 H, J = 11.6 Hz), 4.78 (d, 1 H, J = 11.6 Hz), 7.35 (m, 5 H). 13C
NMR (100 MHz, CDCl3): δ = 21.29, 26.55, 42.12,
61.70, 64.24, 71.10, 83.96, 91.58, 127.95, 127.97 (2 C), 128.48
(2 C), 137.23, 187.32. IR (CHCl3): 3500 (br, OH), 2212
(C≡C), 1676 (C=O) cm-1.
GC-MS (EI); m/z (%): 228(3) [M+ - 18],
185(11), 105(10), 91(100), 77(43), 65(29).
4d: 1H
NMR (400 MHz, CDCl3): δ = 1.06 (s,
9 H, 3 × CH3), 1.21 (d, 3 H, J = 6.1
Hz), 1.61 (br s, 1 H), 1.88 (tt, 2 H, J = 6.2
Hz and 7.1 Hz), 2.47 (m, 2 H, CH2), 2.62 (t, 2 H, J = 7.1 Hz), 3.64 (t, 2 H, J = 6.2 Hz), 4.04 (m, 1 H, CH),
7.41 (m, 6 H), 7.67 (m, 4 H). 13C NMR
(100 MHz, CDCl3): δ = 19.16, 23.08,
26.71, 26.87 (3 C), 29.49, 42.09, 61.83, 67.43, 82.20, 91.61, 127.63
(4 C), 129.75 (2 C), 133.76 (2 C), 135.75 (4 C), 187.77. IR (CHCl3):
3482 (br, OH), 2214 (C≡C), 1669 (C=O) cm-1.
GC-MS (EI); m/z (%):
407 (<1) [M+ - 1],
390 (3), 333 (100), 289 (38), 259 (31), 233 (66), 211 (71), 135 (85),
105 (42), 77 (34).
4e: 1H
NMR (200 MHz, CDCl3): δ = 0.93 (t,
3 H, J = 7.3 Hz), 1.35-1.65
(m, 4 H, 2 × CH2), 1.73 (br s, 1 H), 1.92 (tt,
2 H, J = 7.1 Hz and 6.3 Hz),
2.37 (t, 2 H, J = 6.8 Hz), 2.68
(t, 2 H, J = 7.1 Hz), 3.67 (t,
2 H, J = 6.3 Hz). 13C
NMR (100 MHz, CDCl3): δ = 13.42, 18.59,
21.90, 26.76, 29.65, 42.14, 61.80, 80.77, 94.90, 188.11. IR (CHCl3):
3466 (br, OH), 2213 (C≡C), 1670 (C=O) cm-1.
GC-MS (EI); m/z (%):
168 (<1) [M+], 150
(24), 124 (19), 109 (100), 79 (68), 67 (25), 53 (34).
4f: 1H NMR (200 MHz,
CDCl3): δ = 1.83 (bs, 1 H), 2.00 (tt, 2
H, J = 7.2 Hz and 6.3 Hz), 2.83
(t, 2 H, J = 7.2 Hz), 3.72 (t,
2 H, J = 6.3 Hz), 7.42 (m, 3
H), 7.57 (m, 2 H). 13C NMR (100 MHz,
CDCl3): δ = 26.80, 42.13, 61.78, 87.72,
91.10, 119.84, 128.59 (2 C), 130.72, 133.02 (2 C), 187.82. IR (CHCl3):
3471 (br, OH), 2203 (C≡C), 1664 (C=O) cm-1. GC-MS
(EI); m/z (%):
188 (1) [M+], 170 (19), 144
(13), 129 (100), 115 (11), 102 (29), 75 (20).
4g: 1H NMR (200 MHz,
CDCl3): δ = 1.45-1.90 (m,
5 H, 2 × CH2 and OH), 2.59 (t, 2 H, J = 7.3 Hz), 2.67 (t, 2 H, J = 6.7 Hz), 3.62 (t, 2 H, J = 6.1 Hz), 3.64 (t, 2 H, J = 6.7 Hz), 4.56 (s, 2 H),
7.35 (m, 5 H). 13C NMR (100 MHz, CDCl3): δ = 20.08,
20.42, 31.79, 44.98, 62.21, 67.14, 73.07, 81.32, 90.92, 127.69 (2
C), 127.82, 128.44 (2 C), 137.65, 187.89. GC-MS (EI); m/z (%):
242 (3) [M+ - 18],
198 (1), 183 (5), 159 (4), 105 (9), 91 (100), 77 (22), 65 (21).
4h: 1H NMR (200 MHz,
CDCl3): δ = 1.32 (d, 3 H, J = 6.1 Hz), 1.57 (m, 2 H, CH2),
1.72 (m, 2 H, CH2), 2.59 (m, 2 H, CH2), 2.61
(m, 2 H, CH2), 3.62 (t, 2 H, J = 6.1
Hz), 3.76 (m, 1 H, CH), 4.53 (d, 1 H, J = 11.6
Hz), 4.60 (d, 1 H, J = 11.6 Hz),
7.34 (m, 5 H). 13C NMR (100 MHz, CDCl3): δ = 19.74, 20.12,
26.59, 31.79, 45.02, 62.21, 70.80, 72.59, 82.02, 90.95, 127.61 (2
C), 127.71, 128.41 (2 C), 138.09, 187.91. GC-MS (EI); m/z (%):
256 (1) [M+ - 18],
211 (6), 198 (1), 183 (4), 105 (5), 91 (100), 77 (18), 65 (19).
4i: 1H NMR (400 MHz,
CDCl3): δ = 1.52 (d, 3 H, J = 6.7 Hz), 1.60 (m, 2 H, CH2),
1.78 (m, 2 H, CH2), 2.63 (t, 2 H, J = 7.2 Hz),
3.66 (t, 2 H, J = 6.3 Hz), 4.37
(q, 1 H, J = 6.7 Hz), 4.52 (d,
1 H, J = 11.7 Hz), 4.78 (d,
1 H, J = 11.7 Hz), 7.36 (m,
5 H). 13C NMR (100 MHz, CDCl3): δ = 20.03,
21.30, 31.74, 45.03, 62.22, 64.25, 71.09, 83.97, 91.39, 127.95 (3
C), 128.48 (2 C), 137.24, 187.41. IR (CHCl3): 3512 (br,
OH), 2212 (C≡C), 1675 (C=O) cm-1.
GC-MS (EI); m/z (%):
242 (<1) [M+ - 18],
199 (10), 185 (5), 135 (4), 108 (20), 91 (100), 77 (31), 65 (14).
4j: 1H NMR (400 MHz,
CDCl3): δ = 0.93 (t, 3 H, J = 7.4 Hz), 1.44 (m, 2 H, CH2),
1.53-1.63 (m, 4 H, 2 × CH2), 1.70 (br
s, 1 H), 1.74 (m, 2 H, CH2), 2.37 (t, 2 H, J = 7.0 Hz), 2.59 (t, 2 H, J = 7.4 Hz), 3.65 (t, 2 H, J = 6.4 Hz). 13C
NMR (100 MHz, CDCl3): δ = 13.41, 18.58,
20.13, 21.90, 29.66, 31.80, 45.03, 62.22, 80.78, 94.62, 188.19.
IR (CHCl3): 3479 (br, OH), 2213 (C≡C), 1667
(C=O) cm-1. GC-MS (EI); m/z (%):
182 (<1) [M+], 164
(13), 135 (6), 109 (100), 79 (46), 67 (24), 55 (21).
4k: 1H NMR (200 MHz,
CDCl3): δ = 1.47 (br s, 1 H), 1.64 (m,
2 H, CH2), 1.83 (m, 2 H, CH2), 2.74 (t, 2
H, J = 7.1 Hz), 3.69 (t, 2 H, J = 6.2 Hz), 7.42 (m, 3 H),
7.57 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 20.22,
31.83, 45.05, 62.25, 87.73, 90.86, 119.89, 128.59 (2C), 130.68,
133.00 (2C), 187.88. IR (CHCl3): 3506 (br, OH), 2204
(C≡C), 1665 (C=O) cm-1.
GC-MS (EI); m/z (%):
202 (<1) [M+], 184
(15), 129 (100), 115 (8), 102 (31), 75 (14).
4l: 1H NMR (400 MHz,
CDCl3): δ = 1.20 (d, 3 H, J = 6.3 Hz), 1.67 (bs, 1 H),
1.69-1.87 (m, 2 × 1 H, CH2), 2.67 (t,
2 H, J = 6.8 Hz), 2.69 (m, 2
H, CH2), 3.64 (t, 2 H, J = 6.8
Hz), 3.81 (ddq, 1 H, J = 4.3
Hz, 6.3 Hz and 7.9 Hz), 4.56 (s, 2 H, CH2), 7.28-7.38
(m, 5 H). 13C NMR (100 MHz, CDCl3): δ = 20.44, 23.56,
32.82, 41.85, 67.09, 67.13, 73.07, 81.37, 91.05, 127.69 (2 C), 127.82,
128.45 (2 C), 137.66, 187.95. GC-MS (EI); m/z (%): 242(2) [M+-18],
183 (2), 159 (4), 105 (8), 91 (100), 77 (19), 65 (17).
4m: 1H NMR (400 MHz,
CDCl3): δ = 1.19 (d, 3 H, J = 6.0 Hz), 1.32 (d, 3 H, J = 6.1 Hz), 1.65 (br s, 1 H),
1.77 (m, 2 H, CH2), 2.55 (dd, 1 H, J = 17.2
Hz and 6.3 Hz), 2.66 (dd, 1 H, J = 17.2
Hz and 5.3 Hz), 2.69 (t, 2 H, J = 7.3
Hz), 3.76 (m, 1 H, CH), 3.80 (m, 1 H, CH), 4.54 (d, 1 H, J = 11.9 Hz), 4.59 (d, 1 H, J = 11.9 Hz), 7.27-7.35
(m, 5 H). 13C NMR (100 MHz, CDCl3): δ = 19.73,
23.54, 26.60, 32.84, 41.88, 67.07, 70.78, 72.57, 82.05, 91.07, 127.59
(2C), 127.69, 128.40 (2 C), 138.09, 187.96. IR (CHCl3):
3484 (br, OH), 2214 (C≡C), 1669 (C=O) cm-1.
GC-MS (EI); m/z (%):
256 (<1) [M+ - 18], 212
(3), 183 (2), 155 (4), 135 (5), 105 (4), 91 (100), 77 (15), 65 (14).
4n: 1H NMR (400 MHz,
CDCl3): δ = 1.38 (m, 2 H, CH2), 1.56
(m, 2 H, CH2), 1.68 (m, 2 H, CH2), 2.55 (t,
2 H, J = 7.5 Hz), 2.67 (t, 2
H, J = 6.6 Hz), 3.62 (t, 2 H, J = 6.2 Hz), 3.64 (t, 2 H, J = 6.6 Hz), 4.56 (s, 2 H, CH2),
7.27-7.38 (m, 5 H). 13C NMR
(100 MHz, CDCl3): δ = 20.41, 23.64,
25.06, 32.29, 45.29, 62.50, 67.15, 73.05, 81.36, 90.71, 127.66 (2
C), 127.80, 128.43 (2 C), 137.66, 187.98. GC-MS (EI); m/z (%): 274
(<1) [M+], 202 (6),
159 (7), 105 (5), 91 (100), 79 (10), 65(12).
4o: 1H NMR (400 MHz,
CDCl3): δ = 0.93 (t, 3 H, J = 7.3 Hz), 1.36-1.48
(m, 4 H, 2 × CH2), 1.52 (br s, 1 H), 1.53-1.62
(m, 4 H, 2 × CH2), 1.69 (m, 2 H, CH2),
2.37 (t, 2 H, J = 7.1 Hz), 2.55
(t, 2 H, J = 7.3 Hz), 3.65 (t,
2 H, J = 6.6 Hz). 13C
NMR (100 MHz, CDCl3): δ = 13.43, 18.58,
21.90, 23.75, 25.09, 29.68, 32.34, 45.36, 62.56, 80.83, 94.43, 188.27.
IR (CHCl3): 3482 (br, OH), 2213 (C≡C), 1666
(C=O) cm-1. GC-MS (EI); m/z (%):
196 (<1) [M+], 178
(2), 167 (4), 124 (42), 109 (100), 95 (9), 79 (41), 67 (12).