Subscribe to RSS
DOI: 10.1055/s-2003-39303
A Comparative Study of the Synthesis of C2-Symmetric Chiral 2,2′-Biaziridinyls
Publication History
Publication Date:
20 May 2003 (online)
Abstract
Two comparative synthetic routes to new enantiomeric C2-symmetric Boc-protected biaziridinyls from tartaric ester were studied. Simplicity, high enantiomeric purity and high chemical yield of the target compound characterize the proposed methods. Also, unprotected biaziridinyl was synthesized and fully characterized.
Key words
stereoselective synthesis - azides - heterocycles - chiral auxiliaries
-
1a
Kim BM.So SM.Choi HJ. Org. Lett. 2002, 4: 949 -
1b
Ungureanu I.Klotz P.Schoenfelder A.Mann A. Tetrahedron Lett. 2001, 42: 6087 -
1c
Turner JJ.Sikkema FD.Filippov DV.van der Marel GA.van Boom JH. Synlett 2001, 1727 -
1d
Fort S.McCort I.Duréault A.Depezay J.-C. Synlett 1997, 1235 - 2
Matthews JL.McArthur DR.Muir KW. Tetrahedron Lett. 2002, 43: 5401 -
3a
Ghosh AK.Bilcer G.Schiltz G. Synthesis 2001, 2203 -
3b
Kim BM.Bae SJ.So SM.Yoo HT.Chang SK.Lee JH.Kang JS. Org. Lett. 2001, 3: 2349 - 4
Andersson PG.Johansson F.Tanner D. Tetrahedron 1998, 54: 11549 - 5
Andersson PG.Guijarro D.Tanner D. J. Org. Chem. 1997, 62: 7364 - 6
Tanner D.Johansson F.Harden A.Andersson PG. Tetrahedron 1998, 54: 15731 - 7
Müller P.Nury P. Helv. Chim. Acta 2001, 84: 662 - 8
McCoull W.Davis FA. Synthesis 2000, 1347 - 9
Osborn HMI.Sweeney J. Tetrahedron: Asymmetry 1997, 8: 1693 - 10
Kanger T.Kriis K.Pehk T.Müürisepp A.-M.Lopp M. Tetrahedron: Asymmetry 2002, 13: 857 -
11a
Alexakis A.Tomassini A.Chouillet C.Roland S.Mangeney P.Bernardinelli G. Angew. Chem. Int. Ed. 2000, 39: 4093 -
11b
Alexakis A.Andrey O. Org. Lett. 2002, 4: 3611 - 12
Sato M.Sato Y.Yano S.Yoshikawa S. J. Chem. Soc., Dalton Trans. 1985, 895 - For recent examples of catalytic asymmetric aziridation, see:
-
13a
Nishimura M.Minakata S.Takahashi T.Oderaotochi Y.Komatsu M. J. Org. Chem. 2002, 67: 2101 -
13b
Aggarwal VK.Alonso E.Fang G.Ferrara M.Hynd G.Porcelloni M. Angew. Chem. Int. Ed. 2001, 40: 1433 -
13c
Sugihara H.Daikai K.Jin XL.Furuno H.Inanaga J. Tetrahedron Lett. 2002, 43: 2735 -
13d
Aggarwal VK.Ferrara M.O’Brien CJ.Thompson A.Jones RVH.Fieldhouse R. J. Chem. Soc., Perkin Trans. 1 2001, 1635 - For recent examples of stoichiometric asymmetric aziridation, see:
-
14a
Olofsson B.Wijtmans R.Somfai P. Tetrahedron 2002, 58: 5979 -
14b
Shi M.Jiang J.-K.Feng Y.-S. Tetrahedron: Asymmetry 2000, 11: 4923 -
14c
Harms G.Schaumann E.Adiwidjaja G. Synthesis 2001, 577 -
14d
Lee K.-D.Suh J.-M.Park J.-H.Ha H.-J.Choi HG.Park CS.Chang JW.Lee WK.Dong Y.Yun H. Tetrahedron 2001, 57: 8267 -
15a
Kriis K.Kanger T.Pehk T.Lopp M. Proc. Estonian Acad. Sci. Chem. 2001, 50: 173 ; Chem. Abstr. 2002, 136, 118420 -
15b
Scheurer A.Mosset P.Saalfrank RW. Tetrahedron: Asymmetry 1997, 8: 1243 -
15c
Scheurer A.Mosset P.Saalfrank RW. Tetrahedron: Asymmetry 1999, 10: 3559 - 16
Mitsunobu O. In: Comprehensive Organic Synthesis Vol. 6:Trost BM.Fleming I. Pergamon Press; Oxford: 1991. p.1-31 - 18
Barrero AF.Alvarez-Mazaneda EJ.Chahboun R. Tetrahedron Lett. 2000, 41: 1959 - 19
Agami C.Couty F. Tetrahedron 2002, 58: 2701 - 21
Jennings WB.Boyd DR. In Cyclic Organonitrogen StereodynamicsLambert JB.Takeuchi Y. Verlag Chemie; New York: 1992. - 22
Gololobov YG.Kasukhin LF. Tetrahedron 1992, 48: 1353 - 23
Buijnsters PJJA.van der Reijden FP.Feiters MC.de Gelder R.Sommerdijk NAJM.Nolte RJM.Zwanenburg B. J. Chem. Crystallogr. 1999, 29: 179 - 25
McCort I.Ballereau S.Duréault A.Depezay J.-C. Tetrahedron 2002, 58: 8947
References
1H NMR (500 MHz,
CDCl3) δ 1.44 (18 H, s, t-Bu),
3.05 (2 H, m, CHO), 3.20 and 3.47 (4 H, m, CH2NH), 5.43
(2 H,
br s, NH); 13C NMR
(125 MHz, CDCl3) δ 28.29 (q, J = 126.7 Hz, t-Bu), 38.24 (t, J = 126.7
Hz, CH2NH), 55.10 (d, J = 175.0
Hz, CHO), 79.69 (s, t-Bu), 156.23 (s,
CONH).CI-MS m/z (%)
303 (3) (M + H)+, 191 (100), 173 (39),
116 (63).
General experimental procedure for direct ring closure: To a solution of dimesylate 6 (0.46 mmol) in anhydrous THF (5 mL) NaH (0.96 mmol, 60% dispersion in mineral oil) was added portion wise at 0 °C under Ar atmosphere. The mixture was stirred at room temperature for 5 h, quenched with water, extracted with EtOAc. The solvent was evaporated and the mixture was purified by column chromatography on silica gel affording bisaziridine 7 (0.39 mmol) in 85% yield. 1H NMR (500 MHz, CDCl3) δ 1.43 (18 H, s, t-Bu), 2.14 (2 H, d, J = 3.3 Hz, H-3,3′), 2.28 (2 H, d, J = 6.1 Hz, H-3,3′), 2.71 (2 H, m, H-2,2′); 13C NMR (125 MHz, CDCl3) 27.82 (q, J = 127 Hz, t-Bu), 29.51 (dd, J = 176.8 Hz, 170.5 Hz, C-3.3′), 35.47 (d, J = 169 Hz, C-2,2′), 81.36 (s, t-Bu), 161.88 (s, CON). MS m/z (%) 285 (5) (M + H)+, 229 (18), 173 (72), 129 (18), 57 (100), 41 (76). [α]D 20 +175 (c 4.4, MeOH)
24General experimental procedure for the Staudinger reaction: To a solution of azidodiol 2 (1.1 mmol) in anhydrous acetonitrile (6 mL) PPh3 (2.3 mmol) was added and the solution was stirred for 3 h at room temperature followed by reflux for 4 h. The mixture was cooled in the ice-bath and Et3N (2.3 mmol) and Boc2O (2.25 mmol) were added. The mixture was stirred overnight at room temperature, the solvent was evaporated and the residue was triturated with Et2O. The organic layer was purified by column chromatography on silica gel affording target compound 7 in 71% yield.
26General experimental procedure for the Staudinger reaction using polymer-supported PPh3: To a solution of azidodiol 2 (1.1 mmol) in anhydrous acetonitrile (12 mL) polymer-supported PPh3 (2% DVB, 3.3 mmol) was added and the solution was stirred for 3 h at room temperature followed by reflux for 11 h. The resin was filtered, the filtrate was evaporated and the residue was purified on aluminum oxide(basic) affording target compound 10 in 25% yield. MS m/z (%); 83 (54), 68 (32), 56 (100), 42 (61); HRMS calcd for C4H7N2 (M - H)+ 83.0609, found 83.0612.