References
1a
Kim BM.
So SM.
Choi HJ.
Org. Lett.
2002,
4:
949
1b
Ungureanu I.
Klotz P.
Schoenfelder A.
Mann A.
Tetrahedron Lett.
2001,
42:
6087
1c
Turner JJ.
Sikkema FD.
Filippov DV.
van der Marel GA.
van Boom JH.
Synlett
2001,
1727
1d
Fort S.
McCort I.
Duréault A.
Depezay J.-C.
Synlett
1997,
1235
2
Matthews JL.
McArthur DR.
Muir KW.
Tetrahedron Lett.
2002,
43:
5401
3a
Ghosh AK.
Bilcer G.
Schiltz G.
Synthesis
2001,
2203
3b
Kim BM.
Bae SJ.
So SM.
Yoo HT.
Chang SK.
Lee JH.
Kang JS.
Org.
Lett.
2001,
3:
2349
4
Andersson PG.
Johansson F.
Tanner D.
Tetrahedron
1998,
54:
11549
5
Andersson PG.
Guijarro D.
Tanner D.
J.
Org. Chem.
1997,
62:
7364
6
Tanner D.
Johansson F.
Harden A.
Andersson PG.
Tetrahedron
1998,
54:
15731
7
Müller P.
Nury P.
Helv. Chim. Acta
2001,
84:
662
8
McCoull W.
Davis FA.
Synthesis
2000,
1347
9
Osborn HMI.
Sweeney J.
Tetrahedron:
Asymmetry
1997,
8:
1693
10
Kanger T.
Kriis K.
Pehk T.
Müürisepp A.-M.
Lopp M.
Tetrahedron:
Asymmetry
2002,
13:
857
11a
Alexakis A.
Tomassini A.
Chouillet C.
Roland S.
Mangeney P.
Bernardinelli G.
Angew.
Chem. Int. Ed.
2000,
39:
4093
11b
Alexakis A.
Andrey O.
Org. Lett.
2002,
4:
3611
12
Sato M.
Sato Y.
Yano S.
Yoshikawa S.
J. Chem. Soc., Dalton Trans.
1985,
895
For recent examples of catalytic
asymmetric aziridation, see:
13a
Nishimura M.
Minakata S.
Takahashi T.
Oderaotochi Y.
Komatsu M.
J.
Org. Chem.
2002,
67:
2101
13b
Aggarwal VK.
Alonso E.
Fang G.
Ferrara M.
Hynd G.
Porcelloni M.
Angew. Chem. Int. Ed.
2001,
40:
1433
13c
Sugihara H.
Daikai K.
Jin XL.
Furuno H.
Inanaga J.
Tetrahedron
Lett.
2002,
43:
2735
13d
Aggarwal VK.
Ferrara M.
O’Brien CJ.
Thompson A.
Jones RVH.
Fieldhouse R.
J.
Chem. Soc., Perkin Trans. 1
2001,
1635
For recent examples of stoichiometric
asymmetric aziridation, see:
14a
Olofsson B.
Wijtmans R.
Somfai P.
Tetrahedron
2002,
58:
5979
14b
Shi M.
Jiang J.-K.
Feng Y.-S.
Tetrahedron:
Asymmetry
2000,
11:
4923
14c
Harms G.
Schaumann E.
Adiwidjaja G.
Synthesis
2001,
577
14d
Lee K.-D.
Suh J.-M.
Park J.-H.
Ha H.-J.
Choi HG.
Park CS.
Chang JW.
Lee WK.
Dong Y.
Yun H.
Tetrahedron
2001,
57:
8267
15a
Kriis K.
Kanger T.
Pehk T.
Lopp M.
Proc. Estonian Acad.
Sci. Chem.
2001,
50:
173 ; Chem. Abstr. 2002,
136, 118420
15b
Scheurer A.
Mosset P.
Saalfrank RW.
Tetrahedron:
Asymmetry
1997,
8:
1243
15c
Scheurer A.
Mosset P.
Saalfrank RW.
Tetrahedron:
Asymmetry
1999,
10:
3559
16
Mitsunobu O. In:
Comprehensive Organic Synthesis
Vol. 6:
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
p.1-31
17
1H NMR (500 MHz,
CDCl3) δ 1.44 (18 H, s, t-Bu),
3.05 (2 H, m, CHO), 3.20 and 3.47 (4 H, m, CH2NH), 5.43
(2 H,
br s, NH); 13C NMR
(125 MHz, CDCl3) δ 28.29 (q, J = 126.7 Hz, t-Bu), 38.24 (t, J = 126.7
Hz, CH2NH), 55.10 (d, J = 175.0
Hz, CHO), 79.69 (s, t-Bu), 156.23 (s,
CONH).CI-MS m/z (%)
303 (3) (M + H)+, 191 (100), 173 (39),
116 (63).
18
Barrero AF.
Alvarez-Mazaneda EJ.
Chahboun R.
Tetrahedron Lett.
2000,
41:
1959
19
Agami C.
Couty F.
Tetrahedron
2002,
58:
2701
20 General experimental procedure for
direct ring closure: To a solution of dimesylate 6 (0.46
mmol) in anhydrous THF (5 mL) NaH (0.96 mmol, 60% dispersion
in mineral oil) was added portion wise at 0 °C under Ar
atmosphere. The mixture was stirred at room temperature for 5 h,
quenched with water, extracted with EtOAc. The solvent was evaporated
and the mixture was purified by column chromatography on silica
gel affording bisaziridine 7 (0.39 mmol)
in 85% yield. 1H NMR (500 MHz, CDCl3) δ 1.43
(18 H, s, t-Bu), 2.14 (2 H, d, J = 3.3 Hz, H-3,3′),
2.28 (2 H, d,
J = 6.1
Hz, H-3,3′), 2.71 (2 H, m, H-2,2′); 13C
NMR (125 MHz, CDCl3) 27.82 (q, J = 127
Hz, t-Bu), 29.51 (dd, J = 176.8
Hz, 170.5 Hz, C-3.3′), 35.47 (d, J = 169
Hz, C-2,2′), 81.36 (s, t-Bu),
161.88 (s, CON). MS m/z (%)
285 (5) (M + H)+, 229 (18), 173 (72),
129 (18), 57 (100), 41 (76). [α]D
20 +175
(c 4.4, MeOH)
21
Jennings WB.
Boyd DR. In
Cyclic
Organonitrogen Stereodynamics
Lambert JB.
Takeuchi Y.
Verlag Chemie;
New
York:
1992.
22
Gololobov YG.
Kasukhin LF.
Tetrahedron
1992,
48:
1353
23
Buijnsters PJJA.
van der Reijden FP.
Feiters MC.
de Gelder R.
Sommerdijk NAJM.
Nolte RJM.
Zwanenburg B.
J. Chem. Crystallogr.
1999,
29:
179
24 General experimental procedure for
the Staudinger reaction: To a solution of azidodiol 2 (1.1
mmol) in anhydrous acetonitrile (6 mL) PPh3 (2.3 mmol)
was added and the solution was stirred for 3 h at room temperature
followed by reflux for 4 h. The mixture was cooled in the ice-bath
and Et3N (2.3 mmol) and Boc2O (2.25 mmol)
were added. The mixture was stirred overnight at room temperature,
the solvent was evaporated and the residue was triturated with Et2O.
The organic layer was purified by column chromatography on silica
gel affording target compound 7 in 71% yield.
25
McCort I.
Ballereau S.
Duréault A.
Depezay J.-C.
Tetrahedron
2002,
58:
8947
26 General experimental procedure for
the Staudinger reaction using polymer-supported PPh3:
To a solution of azidodiol 2 (1.1 mmol)
in anhydrous acetonitrile (12 mL) polymer-supported PPh3 (2% DVB,
3.3 mmol) was added and the solution was stirred for 3 h at room
temperature followed by reflux for 11 h. The resin was filtered,
the filtrate was evaporated and the residue was purified on aluminum oxide(basic)
affording target compound 10 in 25% yield.
MS m/z (%);
83 (54), 68 (32), 56 (100), 42 (61); HRMS calcd for C4H7N2 (M - H)+ 83.0609,
found 83.0612.