Subscribe to RSS
DOI: 10.1055/s-2003-39314
Stereoselective Allyl Amine
Synthesis via Enantioselective Addition of
Diethylzinc
and Sigmatropic Rearrangement; Synthesis of Lentiginosine
Publication History
Publication Date:
20 May 2003 (online)
Abstract
A new synthetic method for the preparation of allyl amine derivatives has been developed. The key steps of this method are enantioselective addition of diethylzinc (Soai protocol) and allyl cyanate-to-isocyanate rearrangement. Successful application of this procedure realized the synthesis of lentiginosine (6).
Key words
stereoselective - asymmetric synthesis - amines - rearrangements - natural products
-
1a
Ichikawa Y. Synlett 1991, 238 -
1b
Ichikawa Y.Osada M.Ohtani I.Isobe M. J. Chem. Soc., Perkin Trans. 1 1997, 1449 - 2
Soai K.Ookawa A.Kaba T.Ogawa K. J. Am. Chem. Soc. 1987, 109: 7111 - 3
Ichikawa Y.Tsuboi K.Isobe M. J. Chem. Soc., Perkin Trans. 1 1994, 2791 -
4a Isolation:
Pastuszak I.Molyneux RJ.James LF.Elbein AD. Biochemistry 1990, 29: 188 -
4b For the synthetic works,
see:
Yoda H.Kitayama H.Katagiri T.Takabe K. Tetrahedron: Asymmetry 1993, 4: 1455 -
4c
Gurjar MK.Ghosh L.Syamala M.Jayasree V. Tetrahedron Lett. 1994, 35: 8871 -
4d
Nukui S.Sodeoka M.Sasai H.Shibasaki M. J. Org. Chem. 1995, 60: 398 -
4e
Giovannini R.Marcantoni E.Petrini M. J. Org. Chem. 1995, 60: 5706 -
4f
Goti A.Cardona F.Brandi A. Synlett 1996, 761 -
4g
Yoda H.Kawauchi M.Takabe K. Synlett 1998, 137 -
4h
McCaig AE.Meldrum KP.Wightman RH. Tetrahedron 1998, 54: 9429 -
4i
Ha D.-C.Yun C.-S.Lee Y. J. Org. Chem. 2000, 65: 621 -
4j
Yoda H.Katoh H.Ujihara Y.Takabe K. Tetrahedron Lett. 2001, 42: 2509 -
4k
Rasmussen MO.Delair P.Greene AE. J. Org. Chem. 2001, 66: 5438 -
4l
Lim SH.Ma S.Beak P. J. Org. Chem. 2001, 66: 9056 -
4m
Rabiczko J.Urbanczyk-Lipkowska Z.Chmielewski M. Tetrahedron 2002, 58: 1433 -
4n
Chandra KL.Chandrasekhar M.Singh VK. J. Org. Chem. 2002, 67: 4630 -
4o
Feng Z.-X.Zhou W.-S. Tetrahedron Lett. 2003, 44: 497 -
4p
Ayad T.Genisson Y.Baltas M.Gorrichon L. Chem. Commun. 2003, 582 -
5a
Corey EJ.Palani A. Tetrahedron Lett. 1995, 36: 3485 -
5b
Frigerio M.Santagostino M.Sputore S.Palmisano G. J. Org. Chem. 1995, 60: 7272 - 6
Iida H.Yamazaki N.Kibayashi C. J. Org. Chem. 1987, 52: 3337 - 7 In this reaction, it should be noted
that we can avoid matched-mismatched problems when R has stererogenic centers
(Scheme 1), because asymmetric induction is carried out at the remote
position where the effect of R group becomes negligible. In fact,
synthesis of the diastereomer 23 was also
achieved with Soai protocol simply employing (R)-DPMPM
to furnish 23 with 93:7 diastereoselecctivity. Further
transformation of 23 using similar procedures
in Scheme 2 afforded the allyl carbamate 24 in
good yield (Scheme 4). For the matched-mismatched problems, see
the reference:
Masamune S.Choy W.Peterson JS.Sita LR. Angew. Chem., Int. Ed. Engl. 1984, 24: 1 - 9
Fukuyama T.Jow C.-K.Cheung M. Tetrahedron Lett. 1995, 36: 6373 -
10a
Schwab P.France MB.Ziller JW.Grubbs RH. Angew. Chem., Int. Ed. Engl. 1995, 2039 -
10b
Grubbs RH.Chang S. Tetrahedron 1988, 4413
References
The minor isomer produced in the step (8 → 9) was removed at this stage by recrystallisation of 14.
11Spectroscopic data of our synthetic lentiginosine(6): [α] d 27 +1.06 (c 0.47, MeOH). 1H NMR (300MHz, CDCl3): δ = 1.14-1.34 (2 H, m, H-8), 1.38-1.69 (2 H, m, H-6), 1.74-1.97 (2 H, m, H-7), 1.88-1.97 (1 H, m, H-8a), 2.04 (1 H, td, J = 11, 3 Hz, H-5), 2.61 (1 H, dd, J = 11, 7.5 Hz, H-3α), 2.82 (1 H, dd, J = 11, 2 Hz, H-3β), 2.93 (1 H, br d, J = 11 Hz, H-5), 3.64 (1 H, dd, J = 9, 4 Hz, H-1), 4.06 (1 H, ddd, J = 8, 4, 2 Hz, H-2). 13C NMR (75 MHz, CDCl3): δ = 22.8, 23.8, 27.4, 52.4, 60.1, 68.3, 75.5, 82.8.