Subscribe to RSS
DOI: 10.1055/s-2003-40845
Convenient Synthetic Routes to 5-Substituted 3-(4-Methoxyphenyl)-4(1H)-quinolones
Publication History
Publication Date:
24 July 2003 (online)
Abstract
5-Substituted 3-(4-methoxyphenyl)-4(1H)-quinolones 5-18 have been synthesised in good yields from the corresponding 3-(4-methoxyphenyl)-5-trifluoromethanesulfonate-4(1H)-quinolo-nes 4 via palladium-mediated cross-coupling reactions or aromatic nucleophilic substitution (SNAr) reactions.
Key words
quinolones - Stille reaction - Suzuki reaction - nucleophilic aromatic substitutions - aminations.
-
1a
Levitzki A.Gazit A. Science 1995, 267: 1782 -
1b
Dixon RA.Ferreira D. Phytochemistry 2002, 60: 205 - 2
Traxler P.Green J.Mett H.Séquin U.Furet P. J. Med. Chem. 1999, 42: 1018 -
3a
Stille JK. Angew. Chem., Int. Ed. Engl. 1986, 25: 508 -
3b
Farina V.Krishnamurthy V.Scott WJ. Org. React. 1997, 50: 1 -
4a
Miyaura M.Yanagi T.Suzuki A. Synth. Commun. 1981, 11: 513 -
4b
Miyaura M.Suzuki A. Chem. Rev. 1995, 95: 2457 -
4c
Suzuki A. J. Organomet. Chem. 1999, 576: 147 -
5a
Zielske AG. J. Org. Chem. 1987, 52: 1305 -
5b
Kotsuki H.Kobayashi S.Suenaga H.Nishizawa H. Synthesis 1990, 1145 -
5c
Schio L.Lemoine G.Klich M. Synlett 1999, 1559 - 6
Kiely JS.Laborde E.Lesheski LE.Bucsh RA. J. Heterocycl. Chem. 1991, 28: 1581 -
7a
Croisy M.Huel C.Bisagni E. Heterocycles 1997, 45: 1683 -
7b
Joseph B,Darro F,Guillaumet G,Kiss R, andFrydman A. inventors; PCT Int. Appl., WO 0112607. ; Chem. Abstr. 2001, 134, 193348 - 8
Pelter A.Ward RS.Whalley JL. Synthesis 1998, 1793 - 10
Carrera GM.Sheppard GS. Synlett 1994, 93 - 15
Bernotas RC.Cube RV. Synth. Commun. 1990, 20: 1209 -
16a
Garro-Helion F.Merzouk A.Guibé F. J. Org. Chem. 1993, 58: 6109 -
16b
Jaime-Figueroa S.Liu Y.Muchowski JM.Putman DG. Tetrahedron Lett. 1998, 39: 1313 - 17
Singh SB. Tetrahedron Lett. 1995, 36: 2009 - 19
Miki Y.Hachiken H.Kashima Y.Sugimura W.Yanase N. Heterocycles 1998, 48: 1
References
Physical data of 4a:
mp 184-185 °C (EtOAc); IR (KBr): 1628, 1593, 1513
cm-1; 1H NMR (250
MHz, CDCl3): δ 3.76 (s, 3 H, NCH3),
3.81 (s, 3 H, OCH3), 3.94 (s, 3 H, OCH3), 6.71
(s, 1 H, Ar-H), 6.74 (s, 1 H, Ar-H), 6.89 (d, 2 H, J = 8.5 Hz,
Ar-H), 7.51 (d, 2 H, J = 8.5
Hz, Ar-H), 7.52 (s, 1 H, =CH); 13C
NMR (62.90 MHz, DMSO-d
6
): δ 41.2, 55.1, 56.4, 99.5,
106.7, 113.2, 113.4 (2), 121.1, 127.2, 129.8 (2), 143.0, 143.1,
149.0, 158.3, 160.9, 172.9; MS (IS): m/z 444 (MH+). Physical
data of 4b: mp 179-180 °C
(EtOAc); IR (KBr): 1630, 1610, 1592, 1560, 1515 cm-1; 1H
NMR (250 MHz, CDCl3): δ 3.78 (s, 3 H, NCH3),
3.93 (s, 3 H, OCH3), 4.05 (s, 3 H, OCH3),
6.85 (d, 2 H, J = 8.8 Hz, Ar-H),
6.98 (d, 1 H,
J = 8.8
Hz, Ar-H), 7.03 (d, 1 H, J = 8.8
Hz, Ar-H), 7.46 (s, 1 H, =CH), 7.53 (d, 2 H, J = 8.8 Hz, Ar-H); 13C
NMR (62.90 MHz, DMSO-d
6
): δ 46.3, 54.4, 55.6,
110.8, 112.8 (2), 116.1, 121.1, 122.4, 125.9, 128.9 (2), 132.7,
141.2, 143.6, 149.2, 158.0, 173.0; MS (IS): m/z 444
(MH+).
Typical procedure: To a solution of 4a (100 mg, 0.22 mmol) in anhyd 1,4-dioxane (10 mL) was added freshly prepared tetrakis(triphenylphosphine)palladium (17 mg, 0.014 mmol). The solution was stirred at r.t. for 30 min. Phenylboronic acid (42 mg, 0.34 mmol) diluted in absolute EtOH (2 mL) was then added, followed immediately by sat aq NaHCO3 (3 mL). The heterogeneous solution was stirred at reflux for 3 h. After cooling, palladium catalyst was removed by filtration. Brine solution was then added, the two layers were separated and the aqueous phase was extracted with EtOAc (3 × 5 mL). The combined organic extracts were dried over MgSO4 and evaporated. The crude residue was purified by flash chromatography on silica gel (CH2Cl2/EtOAc, 9:1) to afford 60 mg (71%) of 7a.
12Typical procedure: A mixture of triflate 4a (200 mg, 0.45 mmol) and benzylamine (0.24 mL, 2.20 mmol) in 1,4-dioxane (2 mL) was heated at 100 °C for 6 h. After cooling, the solvent was evaporated. The crude residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc/NH4OH 4:6:0.1) to afford 150 mg (83%) of 9.
13Physical data of 9: mp 176-177 °C (EtOAc); IR (KBr): 3174, 1632, 1607, 1570, 1557, 1508, 1471 cm-1; 1H NMR (250 MHz, CDCl3): δ 3.62 (s, 3 H, NCH3), 3.77 (s, 3 H, OCH3), 3.82 (s, 3 H, OCH3), 4.44 (d, 2 H, J = 5.6 Hz, CH2), 5.85 (s, 1 H, Ar-H), 5.87 (s, 1 H, Ar-H), 6.94 (d, 2 H, J = 8.8 Hz, Ar-H), 7.22-7.33 (m, 3 H, Ar-H), 7.38-7.41 (m, 3 H, =CH + Ar-H), 7.48 (d, 2 H, J = 8.8 Hz, Ar-H), 11.02 (broad t, 1 H, J = 5.6 Hz, NH); 13C NMR (62.90 MHz, CDCl3): δ 41.6, 47.3, 55.2, 55.5, 85.2, 89.7, 108.1, 113.8 (2), 122.0, 127.1, 127.4 (2), 128.1, 128.7 (2), 130.2 (2), 138.8, 140.5, 144.4, 153.8, 158.8, 163.6, 178.9; MS (IS): m/z 401 (MH+); Anal. Calcd for C25H24N2O3: C, 74.98; H, 6.04; N, 6.99. Found: C, 75.25; H, 5.89; N, 7.13.
14All new compounds gave satisfactory spectroscopic (1H NMR, 13C NMR, MS and IR) and analytical data.
18Physical data of 18: mp 161-162 °C (EtOAc/petroleum ether); IR (KBr): 3446, 3381, 1635, 1610, 1569, 1511 cm-1; 1H NMR (250 MHz, CDCl3): δ 3.62 (s, 3 H, NCH3), 3.82 (s, 3 H, OCH3), 3.84 (s, 3 H, OCH3), 5.92 (d, 1 H, J = 2.2 Hz Ar-H), 5.98 (d, 1 H, J = 2.2 Hz, Ar-H), 6.94 (d, 2 H, J = 8.8 Hz, Ar-H), 7.11 (broad s, 2 H, NH2), 7.40 (s, 1 H, =CH), 7.49 (d, 2 H, J = 8.8 Hz, Ar-H); 13C NMR (62.90 MHz, CDCl3): δ 41.5, 55.3, 55.5, 87.1, 93.8, 108.4, 113.8 (2), 121.8, 128.1, 130.2 (2), 140.9, 144.2, 153.7, 158.8, 163.2, 179.1; MS (IS): m/z 311 (MH+); Anal. Calcd for C18H18N2O3: C, 69.66; H, 5.85; N, 9.03. Found: C, 70.01; H, 5.69; N, 8.92.