References
1a
Tietze LF.
Beifuss U.
Angew. Chem., Int. Ed. Engl.
1993,
32:
131
1b
Tietze LF.
Chem. Rev.
1996,
96:
115
1c
Tietze LF.
Evers TH.
Topken E.
Angew. Chem. Int. Ed.
2001,
40:
903
1d
Oikawa Y.
Hirasawa H.
Yonemitsu O.
Tetrahedron Lett.
1978,
1759
1e
Oikawa Y.
Hirasawa H.
Yonemitsu O.
Chem. Pharm. Bull.
1982,
30:
3092
2a
Evans DA.
Johnson JS.
Comprehensive Asymmetric Catalysis
Vol. 3:
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
New York:
1999.
p.1177
2b
Kagan HB.
Riant O.
Chem. Rev.
1992,
92:
1007
2c
Breslow R.
Acc. Chem. Res.
1991,
24:
159
2d
Huang Y.
Rawal VH.
J. Am. Chem. Soc.
2002,
124:
9662
2e
Corey EJ.
Perez AG.
Angew. Chem. Int. Ed.
1998,
37:
388 ; Angew. Chem. 1998, 110, 402
3a
List B.
Lerner RA.
Barbas CF.
J. Am. Chem. Soc.
2000,
122:
2395
3b
Sakthivel K.
Notz W.
Bui T.
Barbas CF.
J. Am. Chem. Soc.
2001,
123:
5260
3c
Cordova A.
Notz W.
Barbas CF.
J. Org. Chem.
2002,
67:
301
3d
Chowdari NS.
Ramachary DB.
Cordova A.
Barbas CF.
Tetrahedron Lett.
2002,
43:
9591
3e
Northrup AB.
MacMillan DWC.
J. Am. Chem. Soc.
2002,
124:
6798
3f
Bogevig A.
Juhl K.
Kumaragurubaran N.
Jorgensen KA.
Chem. Commun.
2002,
620
3g
Nakadai M.
Saito S.
Yamamoto H.
Tetrahedron
2002,
58:
8167
4a
Betancort JM.
Sakthivel K.
Thayumanavan R.
Barbas CF.
Tetrahedron Lett.
2001,
42:
4441
4b
Betancort JM.
Barbas CF.
Org. Lett.
2001,
3:
3737
4c
Paras NA.
MacMillan DWC.
J. Am. Chem. Soc.
2002,
124:
7894
4d
Enders D.
Seki A.
Synlett
2002,
26
4e
Halland N.
Hazell RG.
Jorgensen KA.
J. Org. Chem.
2002,
67:
8331
4f
List B.
Castello C.
Synlett
2001,
11:
1687
4g
Halland N.
Hazell RG.
Jorgensen KA.
J. Org. Chem.
2002,
67:
8331
5a
Notz W.
Sakthivel K.
Bui T.
Barbas CF.
Tetrahedron Lett.
2001,
42:
199
5b
Cordova A.
Notz W.
Zhong G.
Betancort JM.
Barbas CF.
J. Am. Chem. Soc.
2002,
124:
1842
5c
Cordova A.
Watanabe S.
Tanaka F.
Notz W.
Barbas CF.
J. Am. Chem. Soc.
2002,
124:
1866
5d
Watanabe S.
Cordova A.
Tanaka F.
Barbas CF.
Org. Lett.
2002,
4:
4519
5e
List B.
J. Am. Chem. Soc.
2000,
122:
9336
6a
Thayumanavan R.
Ramachary DB.
Sakthivel K.
Tanaka F.
Barbas CF.
Tetrahedron Lett.
2002,
43:
3817
6b
Ramachary DB.
Chowdari NS.
Barbas CF.
Tetrahedron Lett.
2002,
43:
6743
6c
Northrup AB.
MacMillan DWC.
J. Am. Chem. Soc.
2002,
124:
2458
6d
Nakamura H.
Yamamoto H.
Chem. Commun.
2002,
1648
6e
Asato AE.
Watanabe C.
Li X.-Y.
Liu RSH.
Tetrahedron Lett.
1992,
33:
3105
7a
Hajos ZG.
Parrish DR.
J. Org. Chem.
1974,
39:
1615
7b
Eder U.
Sauer G.
Wiechert R.
Angew. Chem., Int. Ed. Engl.
1971,
10:
496
7c
Bui T.
Barbas CF.
Tetrahedron Lett.
2000,
41:
6951
7d
Bogevig A.
Juhl K.
Kumaragurubaran N.
Zhuang W.
Jorgensen KA.
Angew. Chem. Int. Ed.
2002,
41:
1790
7e
List B.
J. Am. Chem. Soc.
2002,
124:
5656
7f
Rajagopal D.
Moni MS.
Subramanian S.
Swaminathan S.
Tetrahedron: Asymmetry
1999,
10:
1631
7g
Chowdari NS.
Ramachary DB.
Barbas CF.
Org. Lett.
2003,
5:
1685
8a
Bredenkotter B.
Florke U.
Kuck D.
Chem.-Eur. J.
2001,
7:
3387
8b
Tellenbroker J.
Kuck D.
Eur. J. Org. Chem.
2001,
1483
8c
Bredenkotter B.
Barth D.
Kuck D.
Chem. Commun.
1999,
847
8d
Thommen M.
Keese R.
Synlett
1997,
231
8e
Seifert M.
Kuck D.
Tetrahedron
1996,
52:
13167
8f
Kuck D.
Chem. Ber.
1994,
127:
409
8g
Kuck D.
Schuster A.
Krause RA.
J. Org. Chem.
1991,
56:
3472
8h
Kuck D.
Bogge H.
J. Am. Chem. Soc.
1986,
108:
8107
8i
Hoeve WT.
Wynberg H.
J. Org. Chem.
1980,
45:
2925
8j
Hoeve WT.
Wynberg H.
J. Org. Chem.
1979,
44:
1508
9
General Experimental Procedure for the Preparation of Prochiral Spiro[cyclohexane-1,2′-indan]-1′,3′,4-triones by Using
l
-Proline and Pyrrolidine Catalyzed Hetero-Domino Knoevenagel-Diels-Alder-Epimerization Reaction: Method A. In an ordinary glass vial equipped with a magnetic stirring bar, to 0.5 mmol of the aldehyde and 0.5 mmol of 1,3-indandione was added 1.0 mL of solvent, and then the catalyst l-proline (0.1 mmol) or pyrrolidine (0.15 mmol) was added and the reaction mixture was stirred at ambient temperature for 15-30 min. When the reaction mixture solidified, more solvent was added, 0.5 mL. Then 0.5 mmol of the enone was added and the reaction stirred at 70 °C for 1-2 h (Table
[2]
). The crude reaction mixture was treated with saturated aq NH4Cl solution, the layers were separated, and the organic layer was extracted three to four times with CH2Cl2 (10 mL), dried with anhyd Na2SO4, and evaporated. The pure Domino products were obtained by flash column chromatography (silica gel, mixture of hexane/EtOAc). Method B. In an ordinary glass vial equipped with a magnetic stirring bar, to 0.5 mmol of aldehyde, 0.5 mmol of enone, 0.5 mmol of 1,3-indandione was added 1.0 mL of solvent, and then the catalyst l-proline (0.1 mmol) or pyrrolidine (0.15 mmol) was added and the reaction mixture was heated slowly to 70 °C with stirring for 1-h. the Domino products were isolated as in Method A. Both methods gave identical results. (2β,6β)-2,6-Diphenylspiro[cyclohexane-1,2′-indan]-1′,3′,4-trione(5aa). Plane of symmetry with chair conformation. 1H NMR (399 MHz, CDCl3): δ = 7.64 (1 H, td, J = 7.6 and 1.2 Hz), 7.48 (1 H, m), 7.41 (2 H, m), 7.08-6.90 (10 H, m, 2 × Ph-H), 3.81 (4 H, m), 2.66 (2 H, ABq, J = 17.1 Hz). 13C NMR (100 MHz, CDCl3): δ = 208.4 (C, C=O), 203.4 (C, C=O), 201.8 (C, C=O), 142.7 (C, C-8′), 141.9 (C, C-9′), 137.3 (2 × C), 135.2 (2 × CH), 128.3 (4 × CH), 128.0 (4 × CH), 127.6 (2 × CH), 122.4 (CH), 122.0 (CH), 62.0 (C, C-1 or C-2′), 48.7 (2 × CH), 43.4 (2 × CH2). HRMS (MALDI-FTMS): m/z = 381.1492 [M + H+], calcd for C26H20O3H+ 381.1485. (2β,6α)-2,6-Diphenyl-spiro[cyclohexane-1,2′-indan]-1′,3′,4-trione(6aa).
C2-Symmetry with twist conformation. 1H NMR (399 MHz, CDCl3): δ = 7.57 (2 H, m), 7.52 (2 H, m), 7.08-6.90 (10 H, m, 2 × Ph-H), 3.99 (2 H, dd, J = 13.5 and 3.2 Hz, H-2 and 6), 3.62 (2 H, dd, J = 16.3 and 13.5 Hz, H-3β and 5β), 2.78 (2 H, dd, J = 16.7 and 3.2 Hz, H-3α and 5α). 13C NMR (100 MHz, CDCl3): δ = 210.0 (C, C=O), 202.8 (2 × C, C=O), 142.0 (2 × C, C-8′ and 9′), 137.2 (2 × C), 135.3 (2 × CH,
C-7′ and 4′), 128.3 (4 × CH), 128.1 (4 × CH), 127.3 (2 × CH), 122.4 (2 × CH, C-5′ and 6′), 61.5 (C, C-1 or 2′), 43.4 (2 × CH, C-6 and 2), 41.5 (2 × CH2, C-3 and 5). HRMS (MALDI-FTMS): m/z = 403.1300 [M + Na+], calcd for C26H20O3Na+ 403.1305.
10 Formation of the kinetic product, trans-spirane 6aa as the major isomer in ionic liquids, as opposed to the cis-spirane 5aa through the endo-transition state in the classical Diels-Alder route is likely explained by unique solvation in the ionic liquid of the 2-amino-1,3-butadiene 9a and dienophile 8a in the transition states shown below. Asymmetric solvation in the ionic liquids may produce a steric hindrance with the phenyl group on the dienophile, in the endo-transition state, thereby disfavoring it (Figure
[1]
).
11a
Tanikaga R.
Konya N.
Hamamura K.
Kaji A.
Bull. Chem. Soc. Jpn.
1988,
61:
3211
11b
Tietze LF.
Beifuss U.
The Knoevenagel Reaction, In Comprehensive Organic Synthesis
Vol. 2:
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
Chap. 1.11.
p.341-392
12a
Haslinger E.
Wolschann P.
Bull. Soc. Chim. Belg.
1977,
86:
907
12b
Margaretha P.
Tetrahedron
1972,
28:
83