RSS-Feed abonnieren
DOI: 10.1055/s-2004-817753
A Novel Approach to Erythrinan Alkaloids by Utilizing Substituted Biphenyl as Building Block
Publikationsverlauf
Publikationsdatum:
10. Februar 2004 (online)

Abstract
Aryl ortho-quinone monoacetal 6 possessing a carbamate group on the side chain was synthesized from the appropriate biphenyl precursor via selective oxidation of one of the aromatic rings. Under Lewis acidic conditions, the carbamate group underwent internal attack at the quinone acetal moiety to give the spiro tricycle 9 corresponding to the A-, C-, and D-rings of erythrinan alkaloids, from which O-methylerysodienone was synthesized via the B ring formation in an efficient manner.
Key words
erythrinan alkaloid - biphenyl compound - spirocyclization - ortho-quinone acetal - O-methylerysodienone
-
1a
Dyke SF.Quessy SN. In The Alkaloids Vol. 18:Rodrigo RGA. Academic Press; New York: 1981. p.1 -
1b
Tsuda Y.Sano T. In The Alkaloids Vol. 48:Cordell GA. Academic Press; San Diego: 1996. p.249 - 2 Throughout this work, the commonly accepted erythrinan numbering is used. See:
Boekelheide V.Prelog V. In Progress in Organic Chemistry Vol. 3:Cook JW. Butterworths Scientific; London: 1955. Chap. 5. see also ref. 1 - For recent synthetic studies, see:
-
3a
Fukumoto H.Esumi T.Ishihara J.Hatakeyama S. Tetrahedron Lett. 2003, 44: 8047 -
3b
Shimizu K.Takimoto M.Mori M. Org. Lett. 2003, 5: 2323 -
3c
Gill C.Greenhalgh DA.Simpkins NS. Tetrahedron Lett. 2003, 44: 7803 -
3d
Chikaoka S.Toyao A.Ogasawara M.Tamura O.Ishibashi H. J. Org. Chem. 2003, 68: 312 -
3e
Miranda LD.Zard SZ. Org. Lett. 2002, 4: 1135 -
3f
Allin SM.James SL.Elsegood MRJ.Martin WP. J. Org. Chem. 2002, 67: 9464 -
3g
Padwa A.Waterson AG. J. Org. Chem. 2000, 65: 235 -
3h
Hosoi S.Nagao M.Tsuda Y.Isobe K.Sano T.Ohta T. J. Chem. Soc., Perkin Trans. 1 2000, 1505 -
4a
Barton DHR.James R.Kirby GW.Turner DW.Widdowson DA. J. Chem. Soc. C 1968, 1529 -
4b
Maier UH.Rödl W.Deus-Neumann B.Zenk MH. Phytochemistry 1999, 52: 373 - For a recent review on aryl-aryl bond formations, see:
-
5a
Hassan J.Sévignon M.Gozzi C.Schulz E.Lemaire M. Chem. Rev. 2002, 102: 1359 -
5b For recent examples of biaryl synthesis not relying on aryl-aryl bond formation, see:
Pearson AJ.Kim JB. Tetrahedron Lett. 2003, 44: 8525 -
5c See also:
Anderson JC.Cran JW.King NP. Tetrahedron Lett. 2003, 44: 7771 -
5d
Hamura T.Morita M.Matsumoto T.Suzuki K. Tetrahedron Lett. 2003, 44: 167 -
6a
Ghosal S.Majumdar SK.Chakraborti A. Aust. J. Chem. 1971, 24: 2733 -
6b
Chou C.-T.Swenton JS. J. Am. Chem. Soc. 1987, 109: 6898 -
8a
Miyaura N.Yanagi T.Suzuki A. Synth. Commun. 1981, 11: 513 -
8b
Watanabe T.Miyaura N.Suzuki A. Synlett 1992, 207 -
8c For a review, see:
Miyaura N.Suzuki A. Chem. Rev. 1995, 95: 2457 - 10 For a review on synthetic use of ortho-quinone monoacetals, see:
Quideau S.Pouységu L. Org. Prep. Proced. Int. 1999, 31: 617 -
11a
Tamura Y.Yakura T.Haruta J.Kita Y. J. Org. Chem. 1987, 52: 3927 -
11b
Lewis N.Wallbank P. Synthesis 1987, 1103 -
11c For reviews on phenolic oxidation with hypervalent iodine reagents, see:
Pelter A.Ward RS. Tetrahedron 2001, 57: 273 -
11d
Moriarty RM.Prakash O. Org. React. 2001, 57: 327 - 15
Sakaitani M.Ohfune Y. J. Org. Chem. 1990, 55: 870 ; and references cited therein - 16
Yasui Y.Suzuki K.Matsumoto T. Synlett 2004, DOI
References
All new compounds were fully characterized by 1H and 13C NMR, IR and combustion analysis. Data for the selected compounds follow. Compound 5: Colorless needles (hexane), mp 99.5-100.0 °C. 1H NMR (CDCl3): δ = 7.48 (d, 2 H, J = 7.4 Hz), 7.39 (dd, 2 H, J
1 = J
2 = 7.4 Hz), 7.32 (dd, 1 H, J
1 = J
2 = 7.4 Hz), 6.90 (s, 1 H), 6.79 (s, 1 H), 6.66 (s, 1 H), 6.63 (s, 1 H), 5.17 (s, 2 H), 4.39 (br s, 1 H), 3.92 (s, 3 H), 3.85 (s, 3 H), 3.82 (s, 3 H), 3.61-3.50 (m, 2 H), 3.26-3.09 (m, 2 H), 2.59-2.40 (m, 4 H), 1.40 (s, 9 H), 0.95 (s, 21 H). 13C NMR (CDCl3): δ = 155.7, 148.1, 147.5, 147.1, 146.9, 137.1, 133.5, 132.9, 129.0, 128.9, 128.5, 127.8, 127.4, 115.7, 113.7, 113.2, 112.1, 79.1, 71.0, 64.0, 56.1, 55.9, 55.8, 41.4, 36.6, 33.0, 28.3, 17.9, 11.8. IR (KBr): 3330, 2940, 2865, 1700, 1685, 1510, 1465, 1250, 1160, 1115 cm-1. Anal. Calcd for C40H59NO7Si: C, 69.23; H, 8.57; N, 2.02. Found: C, 69.39; H, 8.87; N, 1.93. Compound 6: 1H NMR (CDCl3): δ = 6.77 (s, 1 H), 6.62 (s, 1 H), 6.21 (s, 1 H), 6.05 (s, 1 H), 4.59 (br, 1 H), 3.91 (s, 3 H), 3.85 (s, 3 H), 3.68-3.58 (m, 2 H), 3.41 (s, 3 H), 3.40 (s, 3 H), 3.40-3.19 (m, 2 H), 2.71 (ddd, 1 H, J
1 = J
2 = 6.4 Hz, J
3 = 12.8 Hz), 2.50 (ddd, 1 H, J
1 = J
2 = 6.4 Hz, J
3 = 12.8 Hz), 2.27 (ddd, 1 H, J
1 = J
2 = 7.2 Hz, J
3 = 14.5 Hz), 2.19 (ddd, 1H, J
1 = J
2 = 7.2 Hz, J
3 = 14.5 Hz), 1.42 (s, 9 H), 0.97 (s, 21 H). 13C NMR (CDCl3): δ = 193.9, 155.7, 152.6, 148.8, 147.4, 139.7, 133.4, 129.3, 129.0, 124.3, 112.2, 112.1, 91.1, 79.3, 61.1, 55.9, 55.8, 49.9, 49.8, 41.3, 37.3, 33.4, 28.4, 17.9, 11.8. IR (NaCl): 3380, 2940, 2870, 1710, 1680, 1515, 1465, 1365, 1250, 1230, 1170, 1100, 755 cm-1. Anal. Calcd for C34H55NO8Si: C, 64.42; H, 8.75; N, 2.21. Found: C, 64.24; H, 8.98; N, 2.01. Compound 9: 1H NMR (CDCl3): δ = 6.61 (s, 1 H), 6.45 (s, 1 H), 6.19 (s, 1 H), 5.79 (s, 1 H), 4.34 (ddd, 1 H, J
1 = J
2 = 4.1 Hz, J
3 = 12.9 Hz), 3.86 (s, 3 H), 3.70-3.63 (m, 1 H), 3.67 (s, 3 H), 3.65 (s, 3 H), 3.47 (ddd, 1 H, J
1 = 6.2 Hz, J
2 = 8.5 Hz, J
3 = 10.9 Hz), 3.36 (ddd, 1 H, J
1 = 5.8 Hz, J
2 = 8.7 Hz, J
3 = 10.9 Hz), 3.01 (ddd, 1 H, J
1 = 4.1 Hz, J
2 = 10.9 Hz, J
3 = 15.3 Hz), 2.80 (ddd, 1 H, J
1 = 3.1 Hz, J
2 = 4.1 Hz, J
3 = 15.3 Hz), 2.40 (ddd, 1 H, J
1 = 5.8 Hz, J
2 = 8.5 Hz, J
3 = 11.6 Hz), 2.08 (ddd, 1 H, J
1 = 6.2 Hz, J
2 = 8.7 Hz,
J
3 = 11.6 Hz), 1.35 (s, 9 H), 0.96 (s, 21 H). 13C NMR (CDCl3): δ = 181.7, 165.8, 155.0, 149.7, 148.5, 147.9, 128.5, 123.9, 123.5, 118.3, 111.2, 109.7, 81.6, 63.9, 61.3, 55.9, 55.8, 55.0, 40.2, 34.0, 29.2, 28.1, 17.8, 11.7. IR (NaCl): 2940, 2865, 1695, 1670, 1645, 1620, 1515, 1465, 1365, 1260, 1220, 1160, 1090, 755 cm-1. Anal. Calcd for C33H51NO7Si: C, 65.86; H, 8.54; N, 2.33. Found: C, 65.59; H, 8.58; N, 2.05. Compound 12: Pale yellow needles (CHCl3), mp 157.5-158.0 °C. 1H NMR (CDCl3): δ = 6.57 (s, 1 H), 6.38 (s, 1 H), 6.31 (s, 1 H), 5.99 (s, 1 H), 3.85 (s, 3 H), 3.70 (s, 3 H), 3.62 (s, 3 H), 3.53 (ddd, 1 H, J
1 = 5.7 Hz, J
2 = 12.3 Hz, J
3 = 14.4 Hz), 3.32 (ddd, 1 H, J
1 = J
2 = 7.0 Hz, J
3 = 14.4 Hz), 3.31-3.14 (m, 3 H), 2.71-2.59 (m, 2 H), 2.54 (dd, 1 H, J
1 = 5.7 Hz, J
2 = 17.3 Hz). 13C NMR (CDCl3):
δ = 181.7, 167.3, 149.7, 148.5, 148.0, 125.9, 124.1, 122.4, 115.7, 112.1, 108.3, 64.8, 55.83, 55.82, 55.0, 47.0, 40.9, 27.9, 20.2. IR (KBr): 2940, 2845, 1675, 1655, 1620, 1510, 1465, 1250, 1210, 1175, 1105, 1010 cm-1. Anal. Calcd for C19H21NO4: C, 69.71; H, 6.47; N, 4.28. Found: C, 69.41; H, 6.76; N, 4.04.
Boronic acid 2 was prepared from isovanillin in six steps [(1) BnBr, NaOH aq, Bu4NHSO4, CH2Cl2 (73%); (2) Ph3P=CH2, THF (98%); (3) (sia)2BH, THF, then H2O2, NaOH aq (97%); (i-Pr)3SiCl, imidazole, DMF (quant); (5) NBS, DMF (84%); (6) BuLi, THF, -78 °C, then B(i-PrO)3, -78 °C to 0 °C, then 2 M HCl aq (75%)].
12Compound 7 was synthesized from aryl bromide i and boronic acid ii in three steps [(1) 10 mol% Pd(PPh3)4, Ba(OH)2, DME, H2O, reflux; (2) H2, 10% Pd/C, MeOH; (3) (AcO)2IPh, MeOH] in 37% overall yield (Figure [2] ).
13Experimental Procedure as Follows: To a mixture of powdered molecular sieves 4 Å (40 mg) and BF3·OEt2 (2.6 mg, 18 µmol) in CH2Cl2 (0.5 mL) was added 6 (49.2 mg, 0.0776 mmol) in CH2Cl2 (1.5 mL) at -20 °C. After 40 min, the reaction was quenched with sat. aq NaHCO3 and the mixture was extracted with EtOAc (× 3). The combined organic extracts were washed with brine, dried (Na2SO4), and concentrated in vacuo. The residue was purified by PTLC (hexane/EtOAc = 6:4) to give 9 (39.3 mg, 84%) as a colorless oil.
14Cu(OTf)2, Sc(OTf)3, and Yb(OTf)3, though worked satisfactorily, did not exceed BF3·OEt2 in the yield of 9.