References
For recent excellent reviews on transition metal-assisted sequential transformations
and domino processes, see e.g.:
<A NAME="RG33803ST-1A">1a</A>
Balme G.
Bossharth E.
Monteiro N.
Eur. J. Org. Chem.
2003,
4101
<A NAME="RG33803ST-1B">1b</A>
Battistuzzi G.
Cacchi S.
Fabrizi G.
Eur. J. Org. Chem.
2002,
2671
<A NAME="RG33803ST-1C">1c</A>
Negishi E.-I.
Copéret C.
Ma S.
Liou S.-Y.
Liu F.
Chem. Rev.
1996,
96:
365
<A NAME="RG33803ST-1D">1d</A>
Tietze LF.
Chem. Rev.
1996,
96:
115
For representative transition metal catalyzed Alder-ene reactions, see e.g.:
<A NAME="RG33803ST-2A">2a</A> Pd:
Trost BM.
Acc. Chem. Res.
1990,
23:
34
<A NAME="RG33803ST-2B">2b</A> Pd:
Trost BM.
Janssen Chim. Acta
1991,
9:
3
<A NAME="RG33803ST-2C">2c</A> Pd:
Trost BM.
Krische MJ.
Synlett
1998,
1
<A NAME="RG33803ST-2D">2d</A> Ru:
Trost BM.
Chem. Ber.
1996,
129:
1313
<A NAME="RG33803ST-2E">2e</A> Ru:
Trost BM.
Toste FD.
Tetrahedron Lett.
1999,
40:
7739
<A NAME="RG33803ST-2F">2f</A> Rh:
Cao P.
Wang B.
Zhang X.
J. Am. Chem. Soc.
2000,
122:
6490
<A NAME="RG33803ST-2G">2g</A> Rh:
Cao P.
Zhang X.
Angew. Chem. Int. Ed.
2000,
22:
4104
<A NAME="RG33803ST-2H">2h</A> Rh:
Lei A.
He M.
Zhang X.
J. Am. Chem. Soc.
2002,
124:
8198
<A NAME="RG33803ST-2I">2i</A> Ir:
Chatani N.
Inoue H.
Morimoto T.
Muto T.
Murai S.
J. Org. Chem.
2001,
66:
4433
<A NAME="RG33803ST-2J">2j</A> Ti:
Sturla SJ.
Kablaoui NM.
Buchwald SL.
J. Am. Chem. Soc.
1999,
121:
1976
For leading reviews on Pd catalyzed cycloisomerizations, see, e.g.:
<A NAME="RG33803ST-3A">3a</A>
Lloyd-Jones GC.
Org. Biomol. Chem.
2003,
215
<A NAME="RG33803ST-3B">3b</A>
Aubert C.
Buisine O.
Malacria M.
Chem. Rev.
2002,
102:
813
<A NAME="RG33803ST-4A">4a</A>
Karpov AS.
Rominger F.
Müller TJJ.
J. Org. Chem.
2003,
68:
1503
<A NAME="RG33803ST-4B">4b</A>
Yehia NAM.
Polborn K.
Müller TJJ.
Tetrahedron Lett.
2002,
43:
6907
<A NAME="RG33803ST-4C">4c</A>
Braun RU.
Zeitler K.
Müller TJJ.
Org. Lett.
2001,
3:
3297
<A NAME="RG33803ST-4D">4d</A>
Müller TJJ.
Robert JP.
Schmälzlin E.
Bräuchle C.
Meerholz K.
Org. Lett.
2000,
2:
2419
<A NAME="RG33803ST-4E">4e</A>
Müller TJJ.
Ansorge M.
Aktah D.
Angew. Chem. Int. Ed.
2000,
39:
1253
<A NAME="RG33803ST-5A">5a</A>
Trost BM.
Li Y.
J. Am. Chem. Soc.
1996,
118:
6625
<A NAME="RG33803ST-5B">5b</A>
Yamada H.
Aoyagi S.
Kibayashi C.
Tetrahedron Lett.
1997,
38:
3027
<A NAME="RG33803ST-6A">6a</A> The synthesis of yne allyl alcohol substrates were performed according to:
Sajiki H.
Hirota K.
Tetrahedron
1998,
54:
13981
<A NAME="RG33803ST-6B">6b</A>
The detailed protocols will be described elsewhere.
<A NAME="RG33803ST-7">7</A>
Typical Procedure (2e, entry 5): To a solution of Pd2 (dba)3·CHCl3 (31 mg, 0.03 mmol) in dichloroethane (10 mL) were added 1e (0.312 g, 1.00 mmol) and HCOOH (92 mg, 2.0 mmol). The reaction mixture was stirred
at r.t. for 2 h and then diluted with of Et2O (150 mL). After filtration the solvents were evaporated in vacuo and the residue
was chromatographed on silica gel to give 0.246 g (79%) of 2e as a yellow oil. IR (neat): 2954 (s), 2897 (w), 2844 (w), 2724 (w), 1736 (s), 1626
(m), 1436 (s), 1251 (s), 1201 (s), 1165 (s), 1122 (m), 1077 (m), 1026 (w), 961 (w),
866 (s), 841 (s), 748 (w), 693 (w) cm-1. 1H NMR (CDCl3, 300 MHz): δ = 0.11 (s, 9 H), 1.85 (dd, J = 10.5, 13.0 Hz, 1 H), 2.48 (ddd, J = 2.0, 8.2, 17.3 Hz, 1 H), 2.62-2.82 (m, 2 H), 2.91 (dt, J = 3.2, 17.0 Hz, 1 H), 2.96-3.05 (m, 1 H), 3.10 (d, J = 17.0 Hz, 1 H), 3.73 (s, 3 H), 3.75 (s, 3 H), 5.30 (q, J = 2.3 Hz, 1 H), 9.79 (t, J = 1.6 Hz, 1 H). 13C NMR (CDCl3, 125.8 MHz): δ = -0.6 (CH3), 38.9 (CH), 39.0 (CH2), 40.2 (CH2), 48.2 (CH2), 52.7 (CH3), 52.8 (CH3), 58.6 (Cquat.), 120.6 (CH), 158.7 (Cquat.), 171.7 (Cquat.), 171.8 (Cquat.), 201.2 (CH). EI-MS (70 eV): m/z (%) = 312 (6) [M+], 297 (9) [M+ - CH3], 281 (17), 270 (27), 252 (29), 237 (15), 225 (10), 209 (10), 193 (14), 163 (43),
149 (18), 137 (17), 120 (22), 89 (66), 73 (100) [Si(CH3)3
+], 59 (30). HRMS: m/z calcd for C15H24O5Si: 312.1393; found: 312.1397.
<A NAME="RG33803ST-8">8</A>
All compounds have been fully characterized spectroscopically and by correct elemental
analysis or HRMS.
<A NAME="RG33803ST-9">9</A>
Typical Procedure (4e, entry 5): To a solution of Pd2
(dba)3·CHCl3 (41 mg, 0.04 mmol) dichloroethane (10 mL) were added 1f (0.316 g, 1.00 mmol) and HCOOH (92 mg, 2.0 mmol). The reaction mixture was stirred
at r.t. for 2 h and then 3a (0.627 g, 1.80 mmol) was added. Then, the reaction mixture was stirred at r.t. for
24 h before it was diluted with Et2O (150 mL). After filtration the solvents were evaporated in vacuo and the residue
was chromatographed on silica gel to give 0.308 g (80%) of 4e as a yellow oil. IR (Film): 2955 (m), 1735 (s), 1653 (m), 1492 (w), 1435 (m), 1368
(w), 1265 (s), 1203 (s), 1171 (s), 1044 (m), 752 (m), 697 (m) cm-1. 1H NMR (CDCl3, 300 MHz): δ = 1.20 (t, J = 7.2 Hz, 3 H), 1.76 (dd, J = 10.6, 12.9 Hz, 1 H), 2.16-2.30 (m, 1 H), 2.46-2.66 (m, 2 H), 2.77-2.93 (m, 1 H),
3.07-3.18 (m, 1 H), 3.29 (d, J = 17.7 Hz, 1 H), 3.61 (s, 3 H), 3.64 (s, 3 H), 4.10 (q, J = 7.2 Hz, 2 H), 5.83 (d, J = 15.4 Hz, 1 H), 6.19-6.25 (m, 1 H), 6.89 (dt, J = 7.1, 15.5 Hz, 1 H), 7.07-7.16 (m, 1 H), 7.16-7.30 (m, 4 H). 13C NMR (CDCl3, 75.5 MHz): δ = 14.4 (CH3), 36.7 (CH2), 38.6 (CH2), 38.9 (CH2), 42.8 (CH), 52.7 (CH3), 52.8 (CH3), 58.9 (Cquat.), 60.1 (CH2), 122.8 (CH), 123.0 (CH), 126.4 (CH), 128.2 (CH), 128.3 (CH), 137.7 (Cquat.), 143.3 (Cquat.), 146.1 (CH), 166.1 (Cquat.), 171.7 (Cquat.). UV-Vis (CH2Cl2):
max (ε) = 258 (18846), 286 (1135) nm. EI-MS (70 eV): m/z (%) = 386 (44) [M]+, 355 (6) [M - H - 2CH3]+, 340 (17) [M - H - 3CH3]+, 280 (22), 273 (20), 241 (19), 213 (100), 181 (10), 153 (48), 91 (18). HRMS: m/z calcd for C22H26O6: 386.1729; found: 386.1735.