Abstract
Microwave activation as a non-conventional energy source has become a very popular and useful technology in organic chemistry. The heating effect utilized in microwave assisted organic transformations is due mainly to dielectric polarization, although conduction loses can also be important particularly at higher temperatures. Only dipolar and interfacial polarization are important factors in heating effects associated with microwave irradiation. The short reaction times and expanded reaction range offered by microwave assisted organic syntheses are suited to the increased demand of the chemical industry. There are two types of microwave reactions, solvent-free and solution-phase. Although microwave-assisted reactions are widely applied in other domains of organic synthesis, their use in the area of carbohydrates has been limited. The purpose of this review is to highlight the applications of microwave irradiation in the synthesis of carbohydrates.
Key words
carbohydrate - synthesis - microwave irradiation - oligosaccharides
References
1a DRL Publication No. 345-A.
1b Presented in part in the XVIII
th
National Carbohydrate Conference, Calcutta, India, November 5-7, 2003.
2
Gedye RN.
Smith F.
Westaway K.
Ali H.
Baldisera L.
Laberge L.
Rousell J.
Tetrahedron Lett.
1986,
27:
279
3
Lidström P.
Tierney J.
Wathey B.
Westman J.
Tetrahedron
2001,
57:
9225
4
Perreux L.
Loupy A.
Tetrahedron
2001,
57:
9199
5
Larhed M.
Hallberg A.
Drug Discovery Today
2001,
6:
406
6
Loupy A.
Petit A.
Hamelin J.
Texier-Boullet F.
Jacquault P.
Mathé D.
Synthesis
1998,
1213
7
Caddick S.
Tetrahedron
1995,
51:
10403
8a
Mingos DMP.
Baghurst DR. In Microwave Enhanced Chemistry
Kingston HM.
Haswell SJ.
American Chemical Society;
Washington DC:
1997.
p.4-7
8b
Zenatti P.
Forgeat M.
Marchand C.
Rabette P.
Technologie et stratégie Bulletin de l’OTS
1992,
55:
4
9
Limousin C.
Cléophax J.
Petit A.
Loupy A.
Lukacs G.
J. Carbohydr. Chem.
1997,
16:
327
10a
Ferrier RJ.
Prasad N.
J. Chem. Soc. C
1969,
570
10b
Ferrier RJ.
Ciment DM.
J. Chem. Soc. C
1966,
441
10c
Ferrier RJ.
Prasad N.
J. Chem. Soc. C
1969,
581
11
Williams NR.
Wander JD.
The Carbohydrates. Chemistry and Biochemistry
Academic Press;
New York:
1980.
p.761-798
12
Sowmya S.
Balasubramanian KK.
Synth. Commun.
1994,
24:
2097
13
Lutz RP.
Chem. Rev.
1984,
84:
205
14a
Giguere RJ.
Bray TL.
Duncan SM.
Majetich G.
Tetrahedron Lett.
1986,
27:
4945
14b
Abramovitch RA.
Org. Prep. Proced. Int.
1991,
23:
683
14c
Srikrishna A.
Nagaraju S.
J. Chem. Soc., Perkin Trans. 1
1992,
311
15
de Oliveira RN.
de Freitas Filho JR.
Srivastava RM.
Tetrahedron Lett.
2002,
43:
2141
16
Gelo-Pujic M.
Guibé-Jampel E.
Loupy A.
Trincone A.
J. Chem. Soc., Perkin Trans. 1
1997,
1001
17
Lewis MD.
Cha JK.
Kishi Y.
J. Am. Chem. Soc.
1982,
104:
4976
18
Paterson L.
Keown LE.
Tetrahedron Lett.
1997,
38:
5727
19
Horita K.
Sakurai Y.
Nagasawa M.
Hachiya S.
Yonemitsu O.
Synlett
1994,
43
20
Suhadolnik RJ.
Nucleoside Antibiotics
Wiley Interscience;
New York:
1970.
21
Weatherman RV.
Mortell KH.
Chervenak M.
Kiessling LL.
Toone E.
J. Biochem.
1996,
35:
3619
22
Csiba M.
Cleophax J.
Loupy A.
Malthête J.
Gero SD.
Tetrahedron Lett.
1993,
34:
1787
23
Bailliez V.
de Figueiredo RM.
Olesker A.
Cléophax J.
Synthesis
2003,
1015
24
Ley SV.
Mynett DM.
Synlett
1993,
793
25
Gelo-Pujic M.
Guibé-Jampel E.
Loupy A.
Galema SA.
Mathé D.
J. Chem. Soc., Perkin Trans. 1
1996,
2777
26a
Granger DL.
Yamamoto KI.
Ribi E.
J. Immunol.
1976,
116:
482
26b
Noll H.
Bloch H.
Asselineau J.
Lederer E.
Biochem. Biophys. Acta
1956,
20:
299
27
Nüchter M.
Ondruschka B.
Lautenschläger W.
Synth. Commun.
2001,
31:
1277
28
Koenigs W.
Knorr E.
Ber. Dtsch. Chem. Ges.
1901,
34:
957
29
Shanmugasundaram B.
Bose AK.
Balasubramanian KK.
Tetrahedron Lett.
2002,
43:
6795
30
Das SK.
Reddy KA.
Roy J.
Synlett
2003,
1607
31
Chang M.
Meyers HV.
Nakanishi K.
Ojika M.
Park JH.
Park HM.
Takeda R.
Vazquez JT.
Wiesler WT.
Pure Appl. Chem.
1989,
61:
1193
32
Mohan H.
Gemma E.
Ruda K.
Oscarson S.
Synlett
2003,
1255
33
Mathew F.
Jayaprakash KN.
Fraser-Reid B.
Mathew J.
Scicinski J.
Tetrahedron Lett.
2003,
44:
9051
34a
Corey EJ.
Fuchs PL.
Tetrahedron Lett.
1972,
3769
34b
Suda M.
Fukushima A.
Tetrahedron Lett.
1981,
22:
759
35
de Figueiredo RM.
Bailliez V.
Dubreuil D.
Olesker A.
Cleophax J.
Synthesis
2003,
2831
36
Lakhrissi Y.
Taillefumier C.
Lakhrissi M.
Chapleur Y.
Tetrahedron: Asymmetry
2000,
11:
417
37
Das SK.
Reddy KA.
Abbineni C.
Roy J.
Rao KVLN.
Sachwani RH.
Iqbal J.
Tetrahedron Lett.
2003,
44:
4507
38
Ghosh R.
De D.
Shown B.
Maiti SB.
Carbohydr. Res.
1999,
321:
1 ; and references therein.
39
Straathof AJJ.
van Bekkum H.
Kieboom APG.
Recl. Trav. Chim. Pays-Bas
1988,
107:
647
40
Baptistella LHB.
Neto AZ.
Onaga H.
Godoi EAM.
Tetrahedron Lett.
1993,
34:
8407
41
Morcuende A.
Valverde S.
Herradón B.
Synlett
1994,
89
42
Söderberg E.
Westman J.
Oscarson S.
J. Carbohydr. Chem.
2001,
20:
397
43
Salanski P.
Descotes G.
Bouchu A.
Queneau Y.
J. Carbohydr. Chem.
1987,
17:
129
44
Limousin C.
Olesker A.
Cléophax J.
Petit A.
Loupy A.
Lukacs G.
Carbohydr. Res.
1998,
312:
23
45
Chirakal R.
Mccarry B.
Lonergan M.
Firnau G.
Garnett S.
Appl. Radiat. Isot.
1995,
46:
149
46
Limousin C.
Cléophax J.
Loupy A.
Petit A.
Tetrahedron
1998,
54:
13567
47
Yu B.
Xie J.
Deng S.
Hui Y.
J. Am. Chem. Soc.
1999,
121:
12196
48 Das, S. K.; Reddy, K. A.; Krovvidi, V. L. N. R. unpublished results.
49
Singh V.
Tiwari A.
Tripathi DN.
Malviya T.
Tetrahedron Lett.
2003,
44:
7295
50
Shieh W.-C.
Dell S.
Repiè
O.
Tetrahedron Lett.
2002,
43:
5607
51 Das, S. K.; Roy, J. unpublished results.
52
Jadav JS.
Reddy BVS.
Rao KV.
Raj KS.
Prasad AR.
Kumar SK.
Kunwar AC.
Jayaprakash P.
Jagannath B.
Angew. Chem. Int. Ed.
2003,
42:
5198
53
Bose AK.
Banik BK.
Mathur C.
Wagle DR.
Manhas MS.
Tetrahedron
2000,
56:
5603