Subscribe to RSS
DOI: 10.1055/s-2004-821092
Georg Thieme Verlag Stuttgart KG · New York
Evolutionary Origin of a Preprotein Translocase in the Periplastid Membrane of Complex Plastids: a Hypothesis
Publication History
Publication Date:
21 July 2004 (online)

Abstract
Plastids with four envelope membranes have evolved from red and green algae engulfed by phagotrophic protozoans. It is assumed that the Sec translocon resides in their outermost membrane, while in the two innermost membranes the Toc-Tic supercomplex is embedded. However, such a single Sec/single Toc-Tic model cannot explain the passage of proteins across the second (or periplastid) membrane which represents the endosymbiont plasmalemma. One of the most recent models postulates that this membrane contains the Toc75 channel which was relocated here from the endosymbiont plastid. Unfortunately, the precursor of this protein carries a bipartite presequence, which means that its insertion into the new membrane would require relocation and/or modification of two different processing peptidases. I suggest that these obstacles can be easily bypassed by the assumption that the mitochondrial Tim23 channel was inserted into the endosymbiont plasmalemma. In contrast to Toc75, this protein has an internal, uncleavable targeting signal and its insertion into the new membrane would require neither relocation nor modification of additional proteins. Besides, such a relocated Tim23 channel could import not only plastid, but also mitochondrial proteins. I hypothesize that from the latter proteins, initially directed to the endosymbiont mitochondrion, periplastid proteins have evolved which are now targeted to the former cytosol and/or nucleus of the eukaryotic algal endosymbiont.
Key words
Evolution - periplastid membrane - plastid - protein import - protists - secondary endosymbiosis.
References
- 1 Bauer M. F., Sirrenberg C., Neupert W., Brunner M.. Role of Tim23 as voltage sensor and presequence receptor in protein import into mitochondria. Cell. (1996); 87 33-41
- 2 Bodył A.. Is protein import into plastids with four-membrane envelopes dependent on two Toc systems operating in tandem?. Plant Biology. (2002); 4 423-431
- 3 Cavalier-Smith T.. Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. Journal of Eukaryotic Microbiology. (1999); 46 347-366
- 4 Cavalier-Smith T.. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. International Journal of Systematic and Evolutionary Microbiology. (2002); 52 297-354
- 5 Cavalier-Smith T.. Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). Philosophical Transactions of the Royal Society of London, Series B. (2003); 359 109-134
- 6 Cleary S. P., Tan F.-C., Nakrieko K.-A., Thompson S. J., Mullineaux P. M., Creissen G. P., von Stedingk E., Glaser E., Smith A. G., Robinson C.. Isolated plant mitochondria import chloroplast precursor proteins in vitro with the same efficiency as chloroplasts. Journal of Biological Chemistry. (2002); 277 5562-5569
- 7 Davis A. J., Ryan K. R., Jensen R. E.. Tim23 p contains separate and distinct signals for targeting to mitochondria and insertion into the inner membrane. Molecular Biology of the Cell. (1998); 9 2577-2593
- 8 Deane J. A., Fraunholz M., Su V., Maier U.-G., Martin W., Durnford D. G., McFadden G. I.. Evidence for nucleomorph to host nucleus gene transfer: light-harvesting complex proteins from cryptomonads and chlorarachniophytes. Protist. (2000); 151 239-252
- 9 Douglas A. E., Raven J. A.. Genomes at the interface between bacteria and organelles. Philosophical Transactions of the Royal Society of London, Series B. (2003); 358 5-17
- 10 Douglas S., Zauner S., Fraunholz M., Beaton M., Penny S., Deng L.-T., Wu X., Reith M., Cavalier-Smith T., Maier U.-G.. The highly reduced genome of an enslaved algal nucleus. Nature. (2001); 410 1091-1096
- 11 Gakh O., Cavadini P., Isaya G.. Mitochondrial processing peptidases. Biochimica et Biophysica Acta. (2002); 1592 63-77
- 12 Gilson P. R., McFadden G. I.. Jam packed genomes - a preliminary, comparative analysis of nucleomorphs. Genetica. (2002); 115 13-28
- 13 Hill K., Model K., Ryan M. T., Dietmeier K., Martin F., Wagner R., Pfanner N.. Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins. Nature. (1998); 395 516-521
- 14 Kilian O., Kroth P. G.. Evolution of protein targeting into “complex” plastids: the “secretory transport” hypothesis. Plant Biology. (2003); 5 350-358
- 15 Kroth P.. Protein transport into secondary plastids and the evolution of primary and secondary plastids. International Review of Cytology. (2002); 221 191-255
- 16 Lang M., Apt K. E., Kroth P. G.. Protein transport into complex diatom plastids utilizes two different targeting signals. Journal of Biological Chemistry. (1998); 273 30973-30978
- 17 Mannella C. A., Neuwald A. F., Lawrence C. E.. Detection of likely transmembrane beta strand regions in sequences of mitochondrial pore proteins using the Gibbs sampler. Journal of Bioenergetics and Biomembranes. (1996); 28 163-169
- 18 Margulis L.. Origin of Eukaryotic Cells. New Haven; Yale University Press (1970)
- 19 McFadden G. I.. Primary and secondary endosymbiosis and the origin of plastids. Journal of Phycology. (2001); 37 951-959
- 20 Mireau H., Lancelin D., Small I. D.. The same Arabidopsis gene encodes both cytosolic and mitochondrial alanyl-tRNA synthetases. Plant Cell. (1996); 8 1027-1039
- 21 Murcha M. W., Lister R., Ho A. Y. Y., Whelan J.. Identification, expression, and import of components 17 and 23 of the inner mitochondrial membrane translocase from Arabidopsis. . Plant Physiology. (2003); 131 1737-1747
- 22 Rapaport D., Neupert W.. Biogenesis of Tom40, core component of the Tom complex of mitochondria. Journal of Cell Biology. (1999); 146 321-331
- 23 Schnepf E., Elbrächter M.. Dinophyte plastids and phylogeny: a review. Grana. (1999); 38 81-97
- 24 Tranel P. J., Keegstra K.. A novel, bipartite transit peptide targets OEP75 to the outer membrane of the chloroplastic envelope. Plant Cell. (1996); 8 2093-2104
- 25 Truscott K. N., Brander K., Pfanner N.. Mechanisms of protein import into mitochondria. Current Biology. (2003); 13 R326-R337
- 26 Truscott K. N., Kovermann P., Geissler A., Merlin A., Meijer M., Driessen A. J. M., Rassow J., Pfanner N., Wagner R.. A presequence- and voltage-sensitive channel of the mitochondrial preprotein translocase formed by Tim23. Nature Structural Biology. (2001); 8 1074-1082
- 27 Wang Y., Lyu Y. L., Wang J. C.. Dual localization of human DNA topoisomerase III to mitochondria and nucleus. Proceedings of the National Academy of Sciences of the United States of America. (2002); 99 12114-12119
- 28 Whatley J. M., John P., Whatley F. R.. From extracellular to intracellular: the establishment of mitochondria and chloroplasts. Proceedings of the Royal Society of London, Series B. (1979); 204 165-187
- 29 Zhang X.-P., Glaser E.. Interaction of plant mitochondrial and chloroplast signal peptides with the Hsp70 molecular chaperone. Trends in Plant Science. (2002); 7 14-21
- 30 Zhou J., Bai Y., Weiner H.. Proteolysis prevents in vivo chimeric fusion protein import into yeast mitochondria. Journal of Biological Chemistry. (1995); 270 16689-16693
A. Bodył
Department of Biodiversity and Evolutionary Taxonomy
Zoological Institute
ul. Przybyszewskiego 63/77
51-148 Wrocław
Poland
Email: bodyl@biol.uni.wroc.pl
Section Editor: G. Thiel