Subscribe to RSS
DOI: 10.1055/s-2004-829067
Reversal of Regioselectivity of Nitrone 1,3-Dipolar Cycloadditions by Lewis Acids
Publication History
Publication Date:
01 July 2004 (online)
![](https://www.thieme-connect.de/media/synlett/200409/lookinside/thumbnails/10.1055-s-2004-829067-1.jpg)
Abstract
The regio- and stereoselectivity of cycloaddition of N-benzyl-2-benzyloxyethylideneamine N-oxide (1) with 3-acroyl-1,3-oxazolidin-2-one (2) in dichloromethane at room temperature depends upon the nature of the Lewis acid. Addition of Lewis acid reverses the regioselectivity of the cycloaddition. The sterically controlled isoxazolidine-5-oxazolidinones 3a,b are produced as the major products in the absence of Lewis acid, while the electronically controlled isoxazolidine-4-oxazolidinones 4a,b are given as dominant products in the Ti(Oi-Pr)2Cl2 complex-catalyzed reactions. The reactions with other Lewis acids such as BF3, ZnBr2 and Mg(ClO4)2 gave both regioisomeric pairs of the diastereoisomers favouring 4-substituted regioisomers.
Key words
dipolar cycloadditions - nitrones - isoxazolidines - Lewis acid
-
1a
Tufariello JJ. In 1,3-Dipolar Cycloaddition ChemistryPadwa A. Wiley Interscience; New York: 1984. Chap. 9. p.83 -
1b
Gothelf KV.Jorgensen KV. Chem. Rev. 1988, 98: 863 - 2
Frederickson M. Tetrahedron 1997, 53: 403 -
3a
Baggiolini EG.Iacobelli JA.Hennesy BM.Batcho AD.Sereno JF.Uskovic MR. J. Org. Chem. 1986, 51: 3098 -
3b
Brandi A.Cicchi S.Goti A.Pietrusiewicz KM. Tetrahedron: Asymmetry 1991, 2: 1063 -
3c
Saito S.Ishikawa T.Kishimoto N.Kohara T.Moriwake T. Synlett 1994, 282 -
3d
Kametani T.Chu SD.Honda T. Heterocycles 1987, 25: 241 -
3e
Merino P.Castillo E.Franco S.Merchan FL.Tejero T. J. Org. Chem. 1998, 63: 2371 -
3f
Bernet B.Vasella A. Helv. Chim. Acta 1979, 62: 2411 -
4a
Torssell KBG. Nitrile Oxides, Nitrones, and Nitronates VCH Publishers Inc.; New York: 1988. -
4b
Grünanger P.Vita-Finzi P. Isoxazoles. Part One, In The Chemistry of Heterocyclic CompoundsTaylor EC.Weissberger A. Wiley; New York: 1991. -
5a
Gothelf KV.Jørgensen KA. J. Org. Chem. 1994, 59: 5687 -
5b
Seebach D.Marti RE.Hintermann T. Helv. Chim. Acta 1996, 79: 1710 -
5c
Hori K.Kodama H.Ohta T.Furukawa I. Tetrahedron Lett. 1996, 37: 5947 -
5d
Jensen K.Gothelf KV.Hazell RG.Jørgensen KA. J. Org. Chem. 1997, 62: 2471 -
5e
Kobayashi S.Kawamura M. J. Am. Chem. Soc. 1998, 120: 5840 -
5f
Hori K.Kodama H.Ohta T.Furukawa I. J. Org. Chem. 1999, 64: 5017 -
5g
Desimoni G.Faita G.Mortoni A.Righetti P. Tetrahedron Lett. 1999, 40: 2001 -
5h
Kodama H.Ito J.Hori K.Ohta T.Furukawa I. J. Organomet. Chem. 2000, 603: 6 -
5i
Iwasa S.Tsushima S.Shimada T.Nishiyama H. Tetrahedron Lett. 2001, 42: 6715 -
5j
Shirahase M.Kanemasa S.Oderaotoshi Y. Org. Lett. 2004, 6: 675 -
5k
Dugovič B.Fiera L.Hametner C.Prónayová N. ARKIVOC 2003, 14: 162 -
6a
Fiera L.Al-Timari UAR.Ertl P. Cycloadditions in Carbohydrate Chemistry ACS Monograph 158, American Chemical Society; Washington: 1992. -
6b
Al-Timari UAR.Fiera L.Ertl P.Goljer I.Prónayová N. Monatsh. Chem. 1992, 123: 999 -
6c
Kubán J.Blanáriková I.Fiera L.Prónayová N. Chem. Pap. 1997, 51: 378 -
6d
Kubán J.Blanáriková I.Fengler-Veith M.Jäger V.Fiera L. Chem. Pap. 1998, 52: 780 -
6e
Blanáriková I.Dugovič B.Fiera L.Hametner C. ARKIVOC 2001, 2: 1091 -
6f
Kubáň J.Kolarovič A.Fiera L.Jäger V.Humpa O.Prónayová N.Ertl P. Synlett 2001, 1862 -
6g
Kubáň J.Kolarovič A.Fiera L.Jäger V.Humpa O.Prónayová N. Synlett 2001, 1866 -
6h
Fischer R.Drucková A.Fiera L.Rybár A.Hametner C.Cyranski MK. Synlett 2002, 1113 -
6i
Fischer R.Hroová E.Drucková A.Fiera L.Hametner C.Cyranski MK. Synlett 2003, 2364 -
7a
Dondoni A.Franco S.Junquera F.Merchán F.Merino P.Tejero T. Synth. Commun. 1994, 24: 2537 -
7b
Goti A.De Sarlo F.Romani M. Tetrahedron Lett. 1994, 35: 6571 -
11a
Tanaka J.Kanemasa S. Tetrahedron 2001, 57: 899 -
11b
Kanemasa S.Ueno N.Shirahase M. Tetrahedron Lett. 2002, 43: 657 -
12a
Kanai M.Muraoka A.Tanaka T.Sawada M.Ikota N.Tomioka K. Tetrahedron Lett. 1995, 36: 9349 -
12b
Nandy JP.Prabhakaran EN.Kumar SK.Kunwar AC.Iqbal J. J. Org. Chem. 2003, 68: 1679 -
13a
Gothelf KV.Hazel RG.Jorgensen KA. J. Org. Chem. 1996, 61: 346 -
13b
Desimoni G.Faita G.Mortoni A.Righetti P. Tetrahedron Lett. 1999, 40: 2001 -
13c
Faita G.Paio A.Quadrelli P.Rancati F.Seneci P. Tetrahedron Lett. 2000, 41: 1265 -
13d
Faita G.Paio A.Quadrelli P.Rancati F.Seneci P. Tetrahedron 2001, 57: 8313
References
Typical Experimental Procedure for Lewis Acid Mediated Cycloaddition: The reaction was carried out under argon atmosphere. To a stirred suspension of Lewis acid in CH2Cl2 (5 mL) the alkene 2 (0.4 mmol) was added at r.t. and the mixture was stirred for 15 min. The nitrone 1 (0.4 mmol) was then added in one portion. The appropriate amounts of Lewis acid and reaction time are listed in Table [1] and Table [2] . The mixture was stirred until complete conversion of nitrone 1 (monitored by TLC). The reaction was quenched with a sat. NH4Cl solution, extracted with CH2Cl2, the combined organic layers were washed with brine, dried over Na2SO4, filtered through a layer of Celite® and the solvent was removed by rotary evaporation. The yellow oil thus obtained was purified by flash chromatography (silica gel, hexanes-EtOAc 6:4). Yields of isolated mixtures of cycloadducts are given in Table [1] and Table [2] .
9trans -3-(2-Benzyl-3-benzyloxymethyl-isoxazolidine-4-carbonyl)-oxazolidin-2-one ( 4a): Yellowish oil. 1H NMR (400 MHz, CDCl3): δ = 7.55-7.24 (m, 10 H, H-Ph), 4.50 (s, 2 H, OCH2Ph), 4.47 (ddd, 1 H, J = 8.7 Hz, J = 5.4 Hz, J = 5.3 Hz, H-4), 4.43-4.27 (m, 3 H, H-5′′, 5a), 4.19 (d, 1 H, J = 13.2 Hz, NCH2Ph), 4.12 (d, 1 H, J = 13.4 Hz, NCH2Ph), 4.09 (dd, 1 H, J = 8.7 Hz, J = 5.6 Hz, H-5b), 4.06-3.94 (m, 2 H, H-4′′), 3.88-3.83 (m, 1 H, H-3), 3.57 (dd, 1 H, J 1 ′ a,b = 9.6 Hz, J 1 ′ a,3 = 6.2 Hz, H-1′a), 3.52 (dd, 1 H, J 1 ′ a,b = 9.6 Hz, J 1 ′ b,3 = 7.3 Hz, H-1′b). 13C NMR (100 MHz, CDCl3): δ = 172.0 (CO), 153.3 [OC(O)N], 137.9, 137.1, 129.1, 128.3, 127.6, 127.6, 127.3 (12 C, C-Ph), 73.2 (OCH2Ph), 71.3 (C-1′), 69.2 (C-5), 66.9 (C-3), 62.0 (C-5′′), 60.9 (NCH2Ph), 51.4 (C-4), 42.7 (C-4′′). cis -3-(2-Benzyl-3-benzyloxymethyl-isoxazolidine-4-carbonyl)-oxazolidin-2-one ( 4b): Yellowish oil. 1H NMR (400 MHz, CDCl3): δ = 7.45-7.27 (m, 10 H, H-Ph), 4.85 (ddd, 1 H, J 4,5b = 9.4 Hz, J 4,5a = 7.9 Hz, J 3,4 = 7.6 Hz, H-4), 4.55 (dd, 1 H, J 5a,b = 8.2 Hz, J 4.5a = 7.9 Hz, H-5a), 4.41 (d, 1 H, J = 11.1 Hz, OCH2Ph), 4.30 (dd, 1 H, J 4,5b = 9.1 Hz, J 5a,b = 8.2 Hz, H-5b), 4.20 (d, 1 H, J = 11.1 Hz, OCH2Ph), 4.15-4.10 (m, 1 H, H-3), 4.12 (d, 1 H, J = 12.6 Hz, NCH2Ph), 4.06 (ddd, 1 H, J 4 ′′ a,5 ′′ a = 9.4 Hz, J 5 ′′ a,b = 8.5 Hz, J 4 ′′ b,5 ′′ a = 7.6 Hz, H-5′′a), 3.90 (d, 1 H, J = 12.6 Hz, NCH2Ph), 3.68 (ddd, 1 H, J 4 ′′ a,b = 10.5 Hz, J 4 ′′ a,5 ′′ a = 9.4 Hz, J 4 ′′ a,5 ′′ b = 5.8 Hz, H-4′′a), 3.64-3.54 (m, 2 H, H-1′), 3.49 (ddd, 1 H, J 4 ′′ b,5 ′′ b = 9.6 Hz, J 5 ′′ a,b = 8.5 Hz, J 4 ′′ a,5 ′′ b = 5.8 Hz, H-5′′b), 3.19 (ddd, 1 H, J 4 ′′ a,b = 10.5 Hz, J 4 ′′ b,5 ′′ b = 9.6 Hz, J 4 ′′ b,5 ′′ a = 7.6 Hz, H-4′′b). 13C NMR (100 MHz, CDCl3): δ = 170.0 (CO), 153.5 [OC(O)N], 138.0, 136.4, 129.2, 128.4, 128.2, 127.5, 127.5, 127.4 (12 C, C-Ph), 72.7 (OCH2Ph), 70.2 (C-1′), 67.4 (C-5), 64.8 (C-3), 61.6 (C-5′′), 60.6 (NCH2Ph), 47.5 (C-4), 42.3 (C-4′′).
10trans -(2-Benzyl-3-benzyloxymethyl-isoxazolidin-5-yl)-methanol ( 6a): Colourless oil. 1H NMR (400 MHz, CDCl3): δ = 7.43-7.27 (m, 10 H, H-Ph); 4.56 (s, 2 H, OCH2Ph), 4.29 (d, 1 H, J = 14.0 Hz, NCH2Ph), 4.21-4.14 (m, 1 H, H-5), 4.00 (d, 1 H, J = 14.0 Hz, NCH2Ph), 3.74 (dd, 1 H, J 1 ′′ a,b = 12.0 Hz, J 1 ′′ a,5 = 2.9 Hz, H-1′′a), 3.60 (dd, 1 H, J 1 ′ a,b = 9.6 Hz, J 1 ′ a,3 = 6.7 Hz, H-1′a), 3.57 (dd, 1 H, J 1 ′ a,b = 9.6 Hz, J 1 ′ b,3 = 5.6 Hz, H-1′b), 3.54 (dd, 1 H, J 1 ′′ a,b = 12.0 Hz, J 1 ′′ b,5 = 5.0 Hz, H-1′′b), 3.30-3.23 (m, 1 H, H-3), 2.26 (ddd, 1 H, J 4a,b = 12.3 Hz, J = 8.2 Hz, J = 7.0 Hz, H-4a), 2.20 (br s, 1 H, OH), 2.11 (ddd, 1 H, J 4a,b = 12.3 Hz, J = 8.2 Hz, J = 6.7 Hz, H-4b). 13C NMR (100 MHz, CDCl3): δ = 137.9, 137.3, 129.1, 128.4, 128.2, 127.6, 127.6, 127.2 (12 C, C-Ph), 77.3 (C-5), 73.3 (OCH2Ph), 71.3 (C-1′), 64.4 (C-3), 63.6 (C-1′′), 61.9 (NCH2Ph), 33.7 (C-4). cis -(2-Benzyl-3-benzyloxymethyl-isoxazolidin-5-yl)-methanol ( 6b): Yellowish oil. 1H NMR (400 MHz, CDCl3): δ = 7.41-7.28 (m, 10 H, H-Ph), 4.57, 4.53 (2 × d, 2 H, J = 12.0 Hz, OCH2Ph), 4.36-4.30 (m, 1 H, H-5), 4.22, 3.97 (2 × d, 2 × 1 H, J = 13.7 Hz, NCH2Ph), 3.75 (dd, 1 H, J 1 ′′ a,b = 11.7 Hz, J 1 ′′ a,5 = 2.6 Hz, H-1′′a), 3.63 (dd, 1 H, J 1 ′ a,b = 9.6 Hz, J 1 ′ a,3 = 7.3 Hz, H-1′a), 3.59 (dd, 1 H, J 1 ′′ a,b = 11.7 Hz, J 1 ′′ b,5 = 4.7 Hz, H-1′′b), 3.56 (dd, 1 H, J 1 ′ a,b = 9.6 Hz, J 1 ′ b,3 = 5.3 Hz, H-1′b), 3.35-3.28 (m, 1 H, H-3), 2.62 (br s, 1 H, OH), 2.53 (ddd, 1 H, J 4a,b = 12.6 Hz, J 4a,3 = J 4a,5 = 8.5 Hz, H-4a), 1.99 (ddd, 1 H, J 4a,b = 12.6 Hz, J = 6.4 Hz, J = 6.1 Hz, H-4b). 13C NMR (100 MHz, CDCl3): δ = 137.9, 137.3, 128.8, 128.4, 128.3, 127.7, 127.6, 127.2 (12 C, C-Ph), 76.6 (C-5), 73.3 (OCH2Ph), 71.8 (C-1′), 64.8 (C-3), 64.7 (C-1′′), 61.4 (NCH2Ph), 33.5 (C-4).