References
1
Beattie G.
Jones PJ.
Inorg. Chem.
1979,
18:
2318
For reviews, see:
2a
Herrmann WA.
Kühn FE.
Acc. Chem. Res.
1997,
30:
169
2b
Owens GS.
Arias J.
Abu-Omar MM.
Catal. Today
2000,
55:
317
2c
Kühn FE.
Herrmann WA.
Chemtracts
2001,
14:
59
3
Soldaini G.
Cardona F.
Goti A.
Tetrahedron Lett.
2003,
44:
5589
4a
Goti A.
Nannelli L.
Tetrahedron Lett.
1996,
37:
6025
4b
Goti A.
Cardona F.
Soldaini G.
Org. Synth.
2004,
81:
in press
5a
Goti A.
Romani M.
Tetrahedron Lett.
1994,
35:
6567
5b
Goti A.
De Sarlo F.
Romani M.
Tetrahedron Lett.
1994,
35:
6571
5c
Cicchi S.
Cardona F.
Brandi A.
Corsi M.
Goti A.
Tetrahedron Lett.
1999,
40:
1989
5d
Cicchi S.
Corsi M.
Goti A.
J. Org. Chem.
1999,
64:
7243
5e
Cicchi S.
Marradi M.
Goti A.
Brandi A.
Tetrahedron Lett.
2001,
42:
6503
6a
The Chemistry of Amino, Nitroso, and Nitro Compounds and their Derivatives
Patai S.
Wiley;
Ney York:
1982.
6b
Nitro Compounds: Recent Advances in Synthesis and Chemistry
Feuer H.
Nielsen AT.
VCH;
New York:
1990.
7a
Jäger V.
Colinas PA.
Nitrile Oxides, In The Chemistry of Heterocyclic Compounds
Vol. 59:
Padwa A.
Pearson WH.
John Wiley and Sons;
New York:
2002.
7b
Torssell KBG.
Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis
VCH;
Weinheim:
1988.
8a
Emmons WD.
Pagano AS.
J. Am. Chem. Soc.
1957,
77:
4557
8b
Ballini R.
Marcantoni E.
Petrini M.
Tetrahedron Lett.
1992,
33:
4835
8c
Olah GA.
Ramajah P.
Lee C.-S.
Prakash GKS.
Synlett
1992,
337
8d
Bose DS.
Vanajatha G.
Synth. Commun.
1998,
28:
4531
8e
Ballistreri FP.
Barbuzzi E.
Tomaselli GA.
Toscano RM.
Synlett
1996,
1093
9a
Just G.
Dahl K.
Tetrahedron
1968,
24:
5251
9b
Kiegiel J.
Popawska M.
JóŸ wik J.
Kosior M.
Jurczak J.
Tetrahedron Lett.
1999,
40:
5605
9c
Gagneux AR.
Meier R.
Helv. Chim. Acta
1970,
53:
1883
9d
Giurg M.
Mochowski M.
Pol. J. Chem.
1997,
71:
1093
10
Yamazaki S.
Bull. Chem. Soc. Jpn.
1997,
70:
877
11
Typical Procedure for the Oxidation of Oximes: A 10 mL reaction flask was charged sequentially with MTO (0.02-0.04 mmol), MeOH (2 mL), and UHP (3 mmol). The stirred solution became yellow due to the formation of peroxy species and after 5 min the oxime (1 mmol) was added. The reaction mixture was stirred at r.t. for the time reported in Table
[1]
. The solvent was evaporated, the crude reaction mixture was added with CH2Cl2 and the undissolved urea was filtered off. The pure products were collected by chromatography on silica gel using the appropriate eluent.
12 All new compounds gave satisfactory analytical and spectroscopic data.
13 Selected data for carbamates:
8: Rf = 0.17 (petroleum ether-Et2O 6:1). Pale yellow solid; mp 118-120 °C. IR (CDCl3): 3421, 2984, 2934, 1730, 1497, 1227 cm-1. 1H NMR (200 MHz, CDCl3): δ = 7.39-7.34 (m, 2 H, ArH), 7.20-7.11 (m, 1 H, ArH), 6.26 (br s, 1 H, NH), 4.24 (q, 2 H, J = 7.0 Hz, OCH2), 1.30 (t, 3 H, J = 7.0 Hz, CH2CH3). 13C NMR (50 MHz, CDCl3): δ = 153.8, 133.8, 132.0, 128.4, 128.2, 62.0, 14.4. MS: m/z (%) = 233 (4) [M+ - 1], 200(13), 198 (47), 176 (32), 173 (40), 163 (54), 161 (100). Anal. Calcd for C9H9Cl2NO2: C, 46.18; H, 3.88; N, 5.98. Found: C, 46.48; H, 3.84; N, 5.76.
11: Rf = 0.20 (petroleum ether-Et2O 4:1). White solid; mp 107-109 °C. IR (CDCl3): 3427, 3314, 2956, 2922, 2861, 1726, 1500, 1450, 1355, 1225 cm-1. 1H NMR (200 MHz, CDCl3): δ = 6.90 (m, 2 H, ArH), 6.11 (br s, 1 H, NH), 3.76 (br s, 3 H, OCH3), 2.28 (s, 3 H), 2.22 (s, 6 H). 13C NMR (50 MHz, CDCl3): δ = 155.1, 136.8, 135.6, 130.9, 128.8, 52.4, 20.8, 18.1. MS: m/z (%) = 193 (91) [M+], 162 (34), 160 (45), 146 (27), 135 (80), 132 (100), 119 (23), 91 (51). Anal. Calcd for C11H15NO2: C, 68.37; H, 7.82; N, 7.25. Found: C, 68.76; H, 7.85; N, 7.72.
14
Knölker H.-J.
Braxmeier T.
Tetrahedron Lett.
1996,
37:
5861
15 Selected data for cycloadducts:
16: White solid; mp 207-209 °C (CH3OH). IR (CDCl3): 3072, 2975, 1732, 1562, 1499, 1433, 1377, 1192 cm-1. 1H NMR (200 MHz, CDCl3): δ = 7.48-7.26 (m, 8 H, ArH), 5.73 (d, 1 H, J = 9.3 Hz, H-6a), 4.91 (d, 1 H, J = 9.3 Hz, H-3a). 13C NMR (50 MHz, CDCl3): δ = 171.1, 168.9, 150.0, 135.2, 132.1, 130.8, 129.4, 129.2, 128.4, 126.0, 125.3, 80.0, 56.7. MS: m/z (%) = 361 (10) [M+], 360 (27) [M+ - 1], 212 (51), 173 (50), 119 (100), 91 (7). Anal. Calcd for C17H10Cl2N2O3: C, 56.53; H, 2.79; N, 7.76. Found: C, 56.37; H, 2.64; N, 8.00.
19: Rf = 0.19 (petroleum ether-Et2O 5:1). White solid; mp 129-130 °C. IR (CDCl3): 2956, 1743, 1437, 1310, 1269, 1225 cm-1. 1H NMR (200 MHz, CDCl3): δ = 6.87 (m, 2 H, ArH), 5.58 (d, 1 H, J = 6.6 Hz, H-5), 4.70 (d, 1 H, J = 6.6 Hz, H-4), 3.85 (s, 3 H, OCH3), 3.60 (s, 3 H, OCH3), 2.27 (s, 3 H), 2.18 (s, 6 H). 13C NMR (50 MHz, CDCl3): δ = 169.3, 167.2, 153.5, 139.2, 136.9, 128.5, 123.3, 80.7, 59.7, 53.1, 53.0, 21.1, 19.6. MS: m/z (%) = 306 (1) [M+], 305 (5) [M+ - 1], 246 (32), 219 (25), 214 (10), 186 (61), 158 (29), 57 (100). Anal. Calcd for C16H19NO5: C, 62.94; H, 6.27; N, 4.59. Found: C, 62.58; H, 6.02; N, 4.40.
16
Typical Procedure for the Synthesis of Cycloadducts: To a stirred solution of MTO (0.04 mmol) in MeOH (2 mL) was added UHP (3 mmol), the dipolarophile (1.5 mmol) and the oxime (1 mmol). The reaction mixture was stirred at r.t. until no more oxime was detected by TLC. The solvent was evaporated, the crude mixture was added with CH2Cl2 and the undissolved urea was filtered off. The residue was purified by chromatography on silica gel to afford the pure products.