Subscribe to RSS
DOI: 10.1055/s-2004-829548
Synthesis and Application of Complexes of a Novel Chiral Diphenylphosphino-Functionalized N-Heterocyclic Carbene
Publication History
Publication Date:
15 July 2004 (online)
Abstract
Complexes of the ligand (S,S)-1-(2-diphenylphosphanyl-naphtalen-1-yl)-3-(2-isopropyl-phenyl)-4,5-diphenyl-imidazolin-2-ylidene, a representative of a new class of chiral ligands, were obtained via a short route starting from (S,S)-1,2-diphenyl-ethylen-1,2-diamine; a Rh-complex was found to promote catalytic hydrogenation of α,β unsaturated esters with up to 99% ee.
Key words
asymmetric catalysis - chiral N-heterocyclic carbenes - chiral P ligands - rhodium - enantioselective hydrogenation
- For recent reviews see:
-
1a
Perry MC.Burgess K. Tetrahedron: Asymmetry 2003, 14: 951 -
1b
Herrmann WA.Köcher C. Angew. Chem., Int. Ed. Engl. 1997, 36: 2162 ; Angew. Chem. 1997, 109, 2256 -
1c
Herrmann WA. Angew. Chem. Int. Ed. 2002, 41: 1290 ; Angew. Chem. 2002, 114, 1342 -
1d
Arduengo AJ. Acc. Chem. Res. 1999, 32: 913 -
2a
Seiders TJ.Ward DW.Grubbs RH. Org. Lett. 2001, 3: 3225 -
2b
Van Veldhuizen JJ.Garber SB.Kingsbury JS.Hoveyda AH. J. Am. Chem. Soc. 2002, 124: 4954 -
2c
Van Veldhuizen JJ.Gillingham DG.Garber SB.Kataoka O.Hoveyda AH. J. Am. Chem. Soc. 2003, 125: 12502 - High enantioselectivity:
-
3a
Perry MC.Cui X.Powell MT.Hou DR.Reibenspies JH.Burgess K. J. Am. Chem. Soc. 2003, 125: 113 -
3b Low enantioselectivity:
Bolm C.Focken T.Raabe G. Tetrahedron: Asymmetry 2003, 14: 1733 -
4a
Herrmann WA.Gooßen LJ.Kocher C.Artus GRJ. Angew. Chem., Int. Ed. Engl. 1996, 35: 2805 ; Angew. Chem. 1996, 108, 2580 -
4b
Enders D.Gielen H.Runsink J.Breuer K.Brode S.Boehn K. Eur. J. Inorg. Chem. 1998, 913 -
4c
Enders D.Gielen H. J. Organomet. Chem. 2001, 617: 70 -
4d
César V.Bellemin-Laponnaz S.Gade LH. Angew. Chem. Int. Ed. 2004, 43: 1014 ; Angew. Chem. 2004, 116, 1036 -
4e
Duan W.-L.Shi M.Rong G.-B. Chem. Commun. 2003, 2916 - 5
Ma Y.Song C.Ma C.Sun Z.Chai Q.Andrus MB. Angew. Chem. Int. Ed. 2003, 115: 6051 ; Angew. Chem. 2003, 115, 6051 - 6
Enders D.Kallfass U. Angew. Chem. Int. Ed. 2002, 41: 1743 ; Angew. Chem. 2002, 114, 1822 -
7a
Seo H.Park HJ.Kim BY.Lee JH.Son SU.Chung YK. Organometallics 2003, 22: 618 -
7b A related chiral C,P,C-ligand:
Gishig S.Togni A. Organometallics 2004, 23: 2479 -
8a
Guillen F.Winn CL.Alexakis A. Tetrahedron: Asymmetry 2001, 12: 2083 -
8b
Pytkowicz J.Roland S.Mangeney P. Tetrahedron: Asymmetry 2001, 12: 2087 -
8c
Alexakis A.Winn CL.Guillen F.Pytkowicz J.Roland S.Mangeney P. Adv. Synth. Catal. 2003, 3: 345 - 9
Glorius F.Altenhoff G.Goddard R.Lehmann C. Chem. Commun. 2002, 22: 2704 -
10a
Lang H.Vittal JJ.Leung P.-H. J. Chem. Soc., Dalton Trans. 1998, 2109 -
10b
Danopoulos AA.Winston S.Gelbrich T.Hursthouse MB.Tooze RP. Chem. Commun. 2002, 482 -
10c
Tsoureas N.Danopoulos AA.Tulloch AAD.Light ME. Organometallics 2003, 22: 4750 -
10d
Yang CH.Lee M.Nolan SP. Org. Lett. 2001, 3: 1511 -
11a
Danopoulos AA.Winston S.Hursthouse MB. J. Chem. Soc., Dalton Trans. 2002, 3090 -
11b
Poyatos M.Mas-Marzá E.Mata JA.Sanau M.Peris E. Eur. J. Inorg. Chem. 2003, 1215 -
11c
Bolm C.Kesselgruber M.Raabe G. Organometallics 2002, 21: 707 - 12
Vázquez-Serrano LD.Owens BT.Buriak JM. Chem. Commun. 2002, 2518 - 13
Kondo K.Kazuta K.Fujita H.Sakamoto Y.Murakami Y. Tetrahedron 2002, 58: 5209 - 14
Hattori T.Sakamoto J.Hayashizaka N.Miyano S. Synthesis 1994, 199 -
16a
Wang HMJ.Lin IJB. Organometallics 1998, 17: 972 -
16b
Pytkowicz J.Roland S.Mangeney P. J. Organomet. Chem. 2001, 631: 157 - 17
Chianese AR.Li X.Janzen MC.Faller JW.Crabtree RH. Organometallics 2003, 22: 1663 - 19
Beck J.Reitz M. Z. Naturforsch 1997, 52b: 604 - 20
Chojnacki J.Becker B.Konitz A.Potrzebowski MJ.Woljnowski W. J. Chem. Soc., Dalton Trans. 1999, 3063 - 21Physical data of (S,S)-6: mp 209-211 °C; [α]D 24 +10.6 (c 0.30, CHCl3). 1H NMR (300 MHz, CDCl3, signals of major and minor isomer are distinguished by indices a and i, respectively): δ = 0.52 (d, J = 6.4 Hz, 3 Ha, CH3), 1.15 (d, J = 6.6 Hz, 3 Ha, CH3), 1.11-1.23 (m, COD-CH2), 1.29 (d, J = 6.8 Hz, 3 Hi, CH3), 1.41 (d, J = 6.6 Hz, 3 Hi, CH3), 1.34-1.77 (m, COD-CH2), 2.00-2.34 (m, COD-CH2), 2.37 (br s, 1 Hi, COD-CH2), 2.86 [sept, J = 6.7 Hz, 1 Ha, CH(CH3)2], 3.18 [sept, J = 6.8 Hz, 1 Hi, CH(CH3)2], 3.62-3.78 (m, 1 Ha + 1 Hi, COD-CH), 3.91-4.05 (m, 1 Ha + 1 Hi, COD-CH), 4.59 (d, J = 10.7 Hz, 1 Hi, CHN), 4.96 (d, J = 5.1 Hz, 1 Ha, CHN), 5.36-5.48 (m, 1 Ha + 1 Hi, COD-CH), 5.50-5.60 (m, 1 Hi, COD-CH), 5.79-5.90 (m, 2 Ha + 1 Hi, 2 CHN, COD-CH), 6.16 (d, J = 7.4 Hz, 1 Ha, CHAr), 6.23 (d, J = 7.4 Hz, 1 Hi, CHAr), 6.67 (t, J = 7.8 Hz, 1 Ha, CHAr), 6.84 (t, J = 7.6 Hz, 1 Hi, CHAr), 6.89-7.97 (m, 28 Ha + 28 Hi, CHAr). 13C NMR (125.67 MHz, CDCl3, 253 K, major and minor isomer): δ = 23.58, 23.83, 25.30, 25.32, 25.75, 25.95, 26.04, 28.42, 29.03 (2 C), 34.19, 34.26, 35.77, 36.57, 75.24, 76.70, 78.69, 81.60, 88.31 (dd, J CP = 15.5 Hz, J CRh = 6.2 Hz), 88.57 (dd, J CP = 14.5 Hz, J CRh = 6.4 Hz), 93.03 (m), 94.39 (dd, J CP = 10.3 Hz, J CRh = 4.7 Hz), 100.46 (d, J CP = 6.0 Hz), 101.05 (d, J CP = 6.4 Hz), 102.81 (d, J CP = 5.2 Hz), 104.06 (d, J CP = 6.0 Hz), 121.31 (d, J CP = 49.9 Hz), 122.86 (d, J CP = 49.0 Hz), 122.86, 123.95, 124.64 (m), 125.17, 125.41, 125.77, 126.15, 126.49, 126.54, 126.74 (d, J CP = 4.3 Hz), 127.10 (d, J CP = 6.6 Hz), 127.35, 127.43, 127.69, 127.74, 127.86, 128.33-128.63 (several signals are overlapping in this range), 128.78, 128.88 (d, J CP = 34.9 Hz), 129.11, 129.27, 129.44, 129.66, 130.16, 130.26, 130.56, 130.63, 130.75 (d, J CP = 37.2 Hz), 131.38, 131.53, 132.03, 132.53 (d, J CP = 11.3 Hz), 132.78, 133.52 (d, J CP = 44.26 Hz), 133.75, 133.91, 134.46, 134.95, 135.53, 137.21, 139.14 (d, J CP = 2.1 Hz), 142.32 (d, J CP = 13.2 Hz), 143.70, 144.32 (d, J CP = 12.3 Hz), 144.78, 207.67 (d, J RhC = 44.4 Hz, only visible in 13C{31P}), 209.87 (d, J RhC = 43.5 Hz, only visible in 13C{31P}). 31P NMR (202.47 MHz, CDCl3, 253 K): δ = 17.89 (d, J RhP = 168.1 Hz, major isomer, 66%), 19.90 (d, J RhP = 162.0 Hz, minor isomer, 33%). HRMS (FAB+, direct insert): m/z calcd for C54H51N2PRh [M - BF4]+: 861.2844. Found: 861.2820.
- 21
-
24a
The rhodium complex (S,S)-6 was also tested in the catalytic asymmetric addition of phenylboronic acid to enones. Using 3 mol% of the complex (S,S)-6 enantioselectivities up to 94% could be achieved
-
24b
J.-M. Becht and E. Bappert, unpublished results.
- 25
Ostermeier M.Brunner B.Korff C.Helmchen G. Eur. J. Org. Chem. 2003, 17: 3453
References
Physical data of (S,S)-4: mp 195-197 °C; [α]D 24 -297 (c 1.13, CHCl3). 1H NMR (300 MHz, CDCl3) for the major isomer of (S,S)-4: δ = 0.93 (d, J = 6.6 Hz, 3 H, CH3), 1.02 (d, J = 6.6 Hz, 3 H, CH3), 3.45 [sept, J = 7.0 Hz, 1 H, CH(CH3)2], (dd, J = 13.6 Hz, J PH = 5.2 Hz, 1 H, CHN), 6.57 (d, J = 13.6 Hz, 1 H, CHN), 6.92-7.79 (m, 27 H, CHAr), 7.82 (d, J = 8.5 Hz, 1 H, CHNaph), 7.99 (d, J = 7.7 Hz 1 H, CHNaph), 8.11 (br s, 1 H, NCHN), 8.54 (d, J = 8.8 Hz, 1 H, CHNaph). 13C NMR (125.8 MHz, CDCl3) for the major isomer of (S,S)-4: δ = 23.60, 24.96, 27.70, 74.97, 79.00 (d, J = 14.1 Hz), 124.36, 126.18, 126.88, 127.26, 127.54, 128.54, 128.87, 128.94, 129.11, 129.13, 129.24 (d, J = 6.6 Hz), 129.39 (d, J = 7.5 Hz), 129.56, 129.72, 129.77, 129.98, 130.08, 130.15, 130.26, 130.66 (d, J = 4.7 Hz), 130.96, 131.42, 132.23, 132.38 (d, J = 14.1 Hz), 132.68 (d, J = 18.8 Hz), 133.30 (d, J = 19.8 Hz), 133.76 (d, J = 18.8 Hz), 134.05 (d, J = 6.6 Hz), 134.30, 134.73 (d, J = 5.7 Hz), 136.41 (d, J = 25.4 Hz), 144.35, 157.38. 31P NMR (121.5 MHz, CDCl3): δ = -19.52 (s, minor isomer, 13%), -21.80 (s, major isomer, 87%). HRMS (FAB+, direct insert): m/z calcd for C46H40N2P [M - BF4]+: 651.2929. Found: 651.2936.
18X-ray single crystal structure determination of compound 5: colorless crystal (polyhedron), dimensions 0.12 × 0.17 × 0.2 mm3, crystal system orthorhombic, space group P21212, Z = 2, a = 16.730 (2) Å, b = 22.902 (3) Å, c = 11.2472 (15) Å, V = 4309.3 (10) Å3, ρ = 1.303 g/cm3, T = 200(2) K, θ max = 23.91 deg, radiation MoKα, λ = 0.71073 Å, 0.3 deg ω-scans with CCD area detector, covering a whole sphere in reciprocal space, 30565 reflections measured, 6649 unique [R(int) = 0.0893], 5558 observed [I>2σ(I)], intensities were corrected for Lorentz and polarization effects, an empirical absorption correction was applied using SADABS (program SADABS V2.03 for absorption correction; G. M. Sheldrick, Bruker Analytical X-ray-Division, Madison, Wisconsin 2001) based on the Laue symmetry of the reciprocal space, µ = 0.56mm-1, structure solved by direct methods and refined against F 2 with a Full-matrix least-squares algorithm using the SHELXTL-PLUS (5.10) software package (software package SHELXTL V5.10 for structure solution and refinement, G. M. Sheldrick, Bruker Analytical X-ray-Division, Madison, Wisconsin 1997), 525 parameters refined, hydrogen atoms were treated using appropriate riding models, Flack absolute structure parameter 0.07 (6), goodness of fit 1.21 for observed reflections, final residual values R1 (F) = 0.077, wR2 (F2) = 0.167 for observed reflections, residual electron density -1.14 to 1.10 eÅ-3. CCDC 236937 contains the supplementary crystallographic data for this structure. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html [or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 (1223)336033; e-mail: deposit@ccdc.cam.ac.uk].
22With PhCF3, n-hexane, MeOH, and THF enantioselectivities were lower.
23Representative Procedure for Catalytic Hydrogenation: Preparation of (R)-8: An autoclave was charged with dimethyl itaconate (158 mg, 1.00 mmol), (S,S)-6 (0.9 mg, 1.0 µmol) and CH2Cl2 (15 mL). The autoclave was then sealed and pressurized to 30 bar of H2. The reaction mixture was stirred for 20 h at r.t. The solution was passed over a short plug of silica gel with CH2Cl2 as eluent. After evaporation of the solvent, 2-methyl-succinic acid dimethyl ester was obtained in quantitative yield. The ee value was determined to be 98.2% ee by GC on a chiral phase (analytical data cf. Table [1] ).