References
For recent reviews see:
1a
Perry MC.
Burgess K.
Tetrahedron: Asymmetry
2003,
14:
951
1b
Herrmann WA.
Köcher C.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2162 ; Angew. Chem. 1997, 109, 2256
1c
Herrmann WA.
Angew. Chem. Int. Ed.
2002,
41:
1290 ; Angew. Chem. 2002, 114, 1342
1d
Arduengo AJ.
Acc. Chem. Res.
1999,
32:
913
2a
Seiders TJ.
Ward DW.
Grubbs RH.
Org. Lett.
2001,
3:
3225
2b
Van Veldhuizen JJ.
Garber SB.
Kingsbury JS.
Hoveyda AH.
J. Am. Chem. Soc.
2002,
124:
4954
2c
Van Veldhuizen JJ.
Gillingham DG.
Garber SB.
Kataoka O.
Hoveyda AH.
J. Am. Chem. Soc.
2003,
125:
12502
High enantioselectivity:
3a
Perry MC.
Cui X.
Powell MT.
Hou DR.
Reibenspies JH.
Burgess K.
J. Am. Chem. Soc.
2003,
125:
113
3b Low enantioselectivity: Bolm C.
Focken T.
Raabe G.
Tetrahedron: Asymmetry
2003,
14:
1733
4a
Herrmann WA.
Gooßen LJ.
Kocher C.
Artus GRJ.
Angew. Chem., Int. Ed. Engl.
1996,
35:
2805 ; Angew. Chem. 1996, 108, 2580
4b
Enders D.
Gielen H.
Runsink J.
Breuer K.
Brode S.
Boehn K.
Eur. J. Inorg. Chem.
1998,
913
4c
Enders D.
Gielen H.
J. Organomet. Chem.
2001,
617:
70
4d
César V.
Bellemin-Laponnaz S.
Gade LH.
Angew. Chem. Int. Ed.
2004,
43:
1014 ; Angew. Chem. 2004, 116, 1036
4e
Duan W.-L.
Shi M.
Rong G.-B.
Chem. Commun.
2003,
2916
5
Ma Y.
Song C.
Ma C.
Sun Z.
Chai Q.
Andrus MB.
Angew. Chem. Int. Ed.
2003,
115:
6051 ; Angew. Chem.
2003, 115, 6051
6
Enders D.
Kallfass U.
Angew. Chem. Int. Ed.
2002,
41:
1743 ; Angew. Chem. 2002, 114, 1822
7a
Seo H.
Park HJ.
Kim BY.
Lee JH.
Son SU.
Chung YK.
Organometallics
2003,
22:
618
7b A related chiral C,P,C-ligand: Gishig S.
Togni A.
Organometallics
2004,
23:
2479
8a
Guillen F.
Winn CL.
Alexakis A.
Tetrahedron: Asymmetry
2001,
12:
2083
8b
Pytkowicz J.
Roland S.
Mangeney P.
Tetrahedron: Asymmetry
2001,
12:
2087
8c
Alexakis A.
Winn CL.
Guillen F.
Pytkowicz J.
Roland S.
Mangeney P.
Adv. Synth. Catal.
2003,
3:
345
9
Glorius F.
Altenhoff G.
Goddard R.
Lehmann C.
Chem. Commun.
2002,
22:
2704
10a
Lang H.
Vittal JJ.
Leung P.-H.
J. Chem. Soc., Dalton Trans.
1998,
2109
10b
Danopoulos AA.
Winston S.
Gelbrich T.
Hursthouse MB.
Tooze RP.
Chem. Commun.
2002,
482
10c
Tsoureas N.
Danopoulos AA.
Tulloch AAD.
Light ME.
Organometallics
2003,
22:
4750
10d
Yang CH.
Lee M.
Nolan SP.
Org. Lett.
2001,
3:
1511
11a
Danopoulos AA.
Winston S.
Hursthouse MB.
J. Chem. Soc., Dalton Trans.
2002,
3090
11b
Poyatos M.
Mas-Marzá E.
Mata JA.
Sanau M.
Peris E.
Eur. J. Inorg. Chem.
2003,
1215
11c
Bolm C.
Kesselgruber M.
Raabe G.
Organometallics
2002,
21:
707
12
Vázquez-Serrano LD.
Owens BT.
Buriak JM.
Chem. Commun.
2002,
2518
13
Kondo K.
Kazuta K.
Fujita H.
Sakamoto Y.
Murakami Y.
Tetrahedron
2002,
58:
5209
14
Hattori T.
Sakamoto J.
Hayashizaka N.
Miyano S.
Synthesis
1994,
199
15 Physical data of (S,S)-4: mp 195-197 °C; [α]D
24 -297 (c 1.13, CHCl3). 1H NMR (300 MHz, CDCl3) for the major isomer of (S,S)-4: δ = 0.93 (d, J = 6.6 Hz, 3 H, CH3), 1.02 (d, J = 6.6 Hz, 3 H, CH3), 3.45 [sept, J = 7.0 Hz, 1 H, CH(CH3)2], (dd, J = 13.6 Hz, J
PH = 5.2 Hz, 1 H, CHN), 6.57 (d, J = 13.6 Hz, 1 H, CHN), 6.92-7.79 (m, 27 H, CHAr), 7.82 (d, J = 8.5 Hz, 1 H, CHNaph), 7.99 (d, J = 7.7 Hz 1 H, CHNaph), 8.11 (br s, 1 H, NCHN), 8.54 (d, J = 8.8 Hz, 1 H, CHNaph). 13C NMR (125.8 MHz, CDCl3) for the major isomer of (S,S)-4: δ = 23.60, 24.96, 27.70, 74.97, 79.00 (d, J = 14.1 Hz), 124.36, 126.18, 126.88, 127.26, 127.54, 128.54, 128.87, 128.94, 129.11, 129.13, 129.24 (d, J = 6.6 Hz), 129.39 (d, J = 7.5 Hz), 129.56, 129.72, 129.77, 129.98, 130.08, 130.15, 130.26, 130.66 (d, J = 4.7 Hz), 130.96, 131.42, 132.23, 132.38 (d, J = 14.1 Hz), 132.68 (d, J = 18.8 Hz), 133.30 (d, J = 19.8 Hz), 133.76 (d, J = 18.8 Hz), 134.05 (d, J = 6.6 Hz), 134.30, 134.73 (d, J = 5.7 Hz), 136.41 (d, J = 25.4 Hz), 144.35, 157.38. 31P NMR (121.5 MHz, CDCl3): δ = -19.52 (s, minor isomer, 13%), -21.80 (s, major isomer, 87%). HRMS (FAB+, direct insert): m/z calcd for C46H40N2P [M - BF4]+: 651.2929. Found: 651.2936.
16a
Wang HMJ.
Lin IJB.
Organometallics
1998,
17:
972
16b
Pytkowicz J.
Roland S.
Mangeney P.
J. Organomet. Chem.
2001,
631:
157
17
Chianese AR.
Li X.
Janzen MC.
Faller JW.
Crabtree RH.
Organometallics
2003,
22:
1663
18 X-ray single crystal structure determination of compound 5: colorless crystal (polyhedron), dimensions 0.12 × 0.17 × 0.2 mm3, crystal system orthorhombic, space group P21212, Z = 2, a = 16.730 (2) Å, b = 22.902 (3) Å, c = 11.2472 (15) Å, V = 4309.3 (10) Å3, ρ = 1.303 g/cm3, T = 200(2) K, θ
max = 23.91 deg, radiation MoKα, λ = 0.71073 Å, 0.3 deg ω-scans with CCD area detector, covering a whole sphere in reciprocal space, 30565 reflections measured, 6649 unique [R(int) = 0.0893], 5558 observed [I>2σ(I)], intensities were corrected for Lorentz and polarization effects, an empirical absorption correction was applied using SADABS (program SADABS V2.03 for absorption correction; G. M. Sheldrick, Bruker Analytical X-ray-Division, Madison, Wisconsin 2001) based on the Laue symmetry of the reciprocal space, µ = 0.56mm-1, structure solved by direct methods and refined against F
2 with a Full-matrix least-squares algorithm using the SHELXTL-PLUS (5.10) software package (software package SHELXTL V5.10 for structure solution and refinement, G. M. Sheldrick, Bruker Analytical X-ray-Division, Madison, Wisconsin 1997), 525 parameters refined, hydrogen atoms were treated using appropriate riding models, Flack absolute structure parameter 0.07 (6), goodness of fit 1.21 for observed reflections, final residual values R1 (F) = 0.077, wR2 (F2) = 0.167 for observed reflections, residual electron density -1.14 to 1.10 eÅ-3. CCDC 236937 contains the supplementary crystallographic data for this structure. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html [or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 (1223)336033; e-mail: deposit@ccdc.cam.ac.uk].
19
Beck J.
Reitz M.
Z. Naturforsch
1997,
52b:
604
20
Chojnacki J.
Becker B.
Konitz A.
Potrzebowski MJ.
Woljnowski W.
J. Chem. Soc., Dalton Trans.
1999,
3063
21Physical data of (S,S)-6: mp 209-211 °C; [α]D
24 +10.6 (c 0.30, CHCl3). 1H NMR (300 MHz, CDCl3, signals of major and minor isomer are distinguished by indices a and i, respectively): δ = 0.52 (d, J = 6.4 Hz, 3 Ha, CH3), 1.15 (d, J = 6.6 Hz, 3 Ha, CH3), 1.11-1.23 (m, COD-CH2), 1.29 (d, J = 6.8 Hz, 3 Hi, CH3), 1.41 (d, J = 6.6 Hz, 3 Hi, CH3), 1.34-1.77 (m, COD-CH2), 2.00-2.34 (m, COD-CH2), 2.37 (br s, 1 Hi, COD-CH2), 2.86 [sept, J = 6.7 Hz, 1 Ha, CH(CH3)2], 3.18 [sept, J = 6.8 Hz, 1 Hi, CH(CH3)2], 3.62-3.78 (m, 1 Ha + 1 Hi, COD-CH), 3.91-4.05 (m, 1 Ha + 1 Hi, COD-CH), 4.59 (d, J = 10.7 Hz, 1 Hi, CHN), 4.96 (d, J = 5.1 Hz, 1 Ha, CHN), 5.36-5.48 (m, 1 Ha + 1 Hi, COD-CH), 5.50-5.60 (m, 1 Hi, COD-CH), 5.79-5.90 (m, 2 Ha + 1 Hi, 2 CHN, COD-CH), 6.16 (d, J = 7.4 Hz, 1 Ha, CHAr), 6.23 (d, J = 7.4 Hz, 1 Hi, CHAr), 6.67 (t, J = 7.8 Hz, 1 Ha, CHAr), 6.84 (t, J = 7.6 Hz, 1 Hi, CHAr), 6.89-7.97 (m, 28 Ha + 28 Hi, CHAr). 13C NMR (125.67 MHz, CDCl3, 253 K, major and minor isomer): δ = 23.58, 23.83, 25.30, 25.32, 25.75, 25.95, 26.04, 28.42, 29.03 (2 C), 34.19, 34.26, 35.77, 36.57, 75.24, 76.70, 78.69, 81.60, 88.31 (dd, J
CP = 15.5 Hz, J
CRh = 6.2 Hz), 88.57 (dd, J
CP = 14.5 Hz, J
CRh = 6.4 Hz), 93.03 (m), 94.39 (dd, J
CP = 10.3 Hz, J
CRh = 4.7 Hz), 100.46 (d, J
CP = 6.0 Hz), 101.05 (d, J
CP = 6.4 Hz), 102.81 (d, J
CP = 5.2 Hz), 104.06 (d, J
CP = 6.0 Hz), 121.31 (d, J
CP = 49.9 Hz), 122.86 (d, J
CP = 49.0 Hz), 122.86, 123.95, 124.64 (m), 125.17, 125.41, 125.77, 126.15, 126.49, 126.54, 126.74 (d, J
CP = 4.3 Hz), 127.10 (d, J
CP = 6.6 Hz), 127.35, 127.43, 127.69, 127.74, 127.86, 128.33-128.63 (several signals are overlapping in this range), 128.78, 128.88 (d, J
CP = 34.9 Hz), 129.11, 129.27, 129.44, 129.66, 130.16, 130.26, 130.56, 130.63, 130.75 (d, J
CP = 37.2 Hz), 131.38, 131.53, 132.03, 132.53 (d, J
CP = 11.3 Hz), 132.78, 133.52 (d, J
CP = 44.26 Hz), 133.75, 133.91, 134.46, 134.95, 135.53, 137.21, 139.14 (d, J
CP = 2.1 Hz), 142.32 (d, J
CP = 13.2 Hz), 143.70, 144.32 (d, J
CP = 12.3 Hz), 144.78, 207.67 (d, J
RhC = 44.4 Hz, only visible in 13C{31P}), 209.87 (d, J
RhC = 43.5 Hz, only visible in 13C{31P}). 31P NMR (202.47 MHz, CDCl3, 253 K): δ = 17.89 (d, J
RhP = 168.1 Hz, major isomer, 66%), 19.90 (d, J
RhP = 162.0 Hz, minor isomer, 33%). HRMS (FAB+, direct insert): m/z calcd for C54H51N2PRh [M - BF4]+: 861.2844. Found: 861.2820.
21
22 With PhCF3, n-hexane, MeOH, and THF enantioselectivities were lower.
23
Representative Procedure for Catalytic Hydrogenation: Preparation of (R)-8: An autoclave was charged with dimethyl itaconate (158 mg, 1.00 mmol), (S,S)-6 (0.9 mg, 1.0 µmol) and CH2Cl2 (15 mL). The autoclave was then sealed and pressurized to 30 bar of H2. The reaction mixture was stirred for 20 h at r.t. The solution was passed over a short plug of silica gel with CH2Cl2 as eluent. After evaporation of the solvent, 2-methyl-succinic acid dimethyl ester was obtained in quantitative yield. The ee value was determined to be 98.2% ee by GC on a chiral phase (analytical data cf. Table
[1]
).
24a The rhodium complex (S,S)-6 was also tested in the catalytic asymmetric addition of phenylboronic acid to enones. Using 3 mol% of the complex (S,S)-6 enantioselectivities up to 94% could be achieved
24b J.-M. Becht and E. Bappert, unpublished results.
25
Ostermeier M.
Brunner B.
Korff C.
Helmchen G.
Eur. J. Org. Chem.
2003,
17:
3453