References
For excellent discussions, see:
1a
Ojima I.
Tzamarioudaki M.
Li Z.
Donovan R.
Chem Rev.
1996,
96:
635
1b
Lautens M.
Klute W.
Tam W.
Chem. Rev.
1996,
96:
49
1c
Trost BM.
Toste FD.
Pinkerton AB.
Chem. Rev.
2001,
101:
2067
1d
Aubert C.
Buisine O.
Malacria M.
Chem. Rev.
2002,
102:
813
For general discussions, see:
2a
Transition Metals for Organic Synthesis
Vol I:
Beller M.
Bolm C.
Wiley-VCH;
Weinheim:
1998.
2b
Transition Metals for Organic Synthesis
Vol II:
Beller M.
Bolm C.
Wiley-VCH;
Weinheim:
1998.
3a
Kablaoui NM.
Buchwald SL.
J. Am. Chem. Soc.
1995,
117:
6785
3b
Kablaoui NM.
Buchwald SL.
J. Am. Chem. Soc.
1996,
118:
3182
3c
Kablaoui NM.
Hick FA.
Buchwald SL.
J. Am. Chem. Soc.
1996,
118:
5818
3d
Kablaoui NM.
Hick FA.
Buchwald SL.
J. Am. Chem. Soc.
1997,
119:
4424
4a
Crowe WE.
Vu AT.
J. Am. Chem. Soc.
1996,
118:
1557
4b
Mandal SM.
Amin SR.
Crowe WE.
J. Am. Chem. Soc.
2001,
123:
6457
5
Trost BM.
Acc. Chem. Res.
2002,
35:
695
6
Chatani N.
Morimoto T.
Fukumoto Y.
Murai S.
J. Am. Chem. Soc.
1998,
120:
5335
7a
Yu C.-M.
Yoon S.-K.
Baek K.
Lee J.-Y.
Angew. Chem. Int. Ed.
1998,
37:
2392
7b
Yu C.-M.
Kim Y.-M.
Kim J.-M.
Synlett
2003,
1518
8a
Kang S.-K.
Hong Y.-T.
Lee J.-H.
Kim W.-Y.
Lee I.
Yu C.-M.
Org. Lett.
2003,
5:
2813
8b
Kang S.-K.
Kim K.-J.
Hong Y.-T.
Angew. Chem. Int. Ed.
2002,
41:
1584
8c
Kang S.-K.
Kim K.-J.
Yu C.-M.
Hwang J.-W.
Do Y.-K.
Org. Lett.
2001,
3:
2851
9 For a review see: Goti A.
Cordero FM.
Brandi A. In
Small Ring Compounds in Organic Synthesis V
de Meijere A.
Springer;
Berlin:
1996.
p.1-98
10a
Stolle A.
Becker H.
Salauen J.
de Meijere A.
Tetrahedron Lett.
1994,
35:
3521
10b
Takano S.
Inomata K.
Ogasawara K.
J. Chem. Soc., Chem. Commun.
1992,
169
11
Ang KH.
Braese S.
Steinig AG.
Meyer FE.
Liebaria A.
Voigt K.
de Meijere A.
Tetrahedron
1996,
52:
11503
12a
Estieu K.
Paugam R.
Ollivier J.
Salauen L.
J. Org. Chem.
1997,
62:
8276
12b
Ferrara M.
Cordero FM.
Goti A.
Brandi A.
Estieu K.
Paugam R.
Ollivier J.
Salaun J.
Eur. J. Org. Chem.
1999,
2725
12c
Pisaneschi F.
Cordero FM.
Goti A.
Paugam R.
Ollivier J.
Brandi A.
Salaun J.
Tetrahedron: Asymmetry
2000,
11:
897
13 For a review see: Gibson SE.
Stevenazzi A.
Angew. Chem. Int. Ed.
2003,
42:
1800 ; and references cited therein
14a
Jeong N.
Lee SJ.
Tetrahedron Lett.
1993,
34:
4027
14b
Brummond KM.
Kerekes AD.
Wan H.
J. Org. Chem.
2002,
67:
5156
15
General Procedure: A flame-dried sealed tube containing C7H8Mo(CO)3 (152.0 mg, 0.56 mmol) was evacuated and carefully purged with argon three times and then charged with 3a (103.0 mg, 0.37 mmol) in dry toluene (3 mL). Freshly distilled DMSO (0.27 mL, 289 mg, 3.80 mmol) was then added at 20 °C. After stirring at 20 °C for 1 h, the reaction mixture was heated and allowed to proceed at 90 °C for 5 h. The resulting mixture was treated with EtOAc. The combined organics were washed with H2O (3 ×) and brine (1 ×). The organic layer was dried over anhyd MgSO4, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (EtOAc-hexane, 1:1) to give 4a (83.0 mg, 0.27 mmol, 73%) as a colorless oil: Rf = 0.37 (EtOAc-hexane, 1:1).
16
1H NMR and 13C NMR data: Compound 4a: 1H NMR (500 MHz, CDCl3): δ = 1.03 (dt, 2 H, J = 3.1, 5.6 Hz), 1.31 (dt, 2 H, J = 3.1, 8.2 Hz), 2.45 (s, 3 H), 2.82 (ddd, 1 H, J = 3.9, 8.2, 7.6 Hz), 3.06 (dd, 1 H, J = 7.6, 10.4 Hz), 3.19 (dd, 1 H, J = 3.9, 10.4 Hz), 3.22 (dd, 1 H, J = 5.3, 11.5 Hz), 3.61 (d, 1 H, J = 11.5 Hz), 5.06 (ddd, 1 H, J = 0.6, 5.3, 8.2 Hz), 7.35 (d, 2 H, J = 8.2 Hz), 7.69 (d, 2 H, J = 8.2 Hz). 13C NMR (125 MHz, CDCl3): δ = 178.6, 144.6, 132.1, 130.1, 128.2, 79.7, 54.6, 52.3, 44.1, 24.8, 21.8, 18.4, 13.0. Compound 4b: 1H NMR (500 MHz, CDCl3): δ = 1.29 (d, 3 H, J = 6.7 Hz), 2.42 (s, 3 H), 2.42 (dd, 1 H, J = 3.7, 6.8 Hz), 3.73 (dq, 1 H, J = 3.7, 6.7 Hz), 3.74 (dd, 1 H, J = 4.5, 13.2 Hz), 3.86 (dd, 1 H, J = 0.8, 13.2 Hz), 5.01 (ddd, 1 H, J = 0.8, 4.5, 6.8 Hz), 7.30 (d, 2 H, J = 8.2 Hz), 7.70 (d, 2 H, J = 8.2 Hz). 13C NMR (125 MHz, CDCl3): δ = 177.8, 144.3, 135.6, 130.1, 127.4, 80.3, 61.2, 53.3, 53.1, 25.4, 22.0, 21.8, 18.6, 12.2. Compound 4c: 1H NMR (500 MHz, CDCl3): δ = 0.83 (ddd, 1 H, J = 4.5, 7.3, 9.6 Hz), 1.03 (s, 3 H), 1.06 (ddd, 1 H, J = 4.5, 7.3, 10.1 Hz), 1.11 (ddd, 1 H, J = 4.5, 7.3, 9.6 Hz), 1.31 (ddd, 1 H, J = 4.5, 7.3, 10.1 Hz), 2.45 (s, 3 H), 2.97 (d, 1 H, J = 10.1 Hz), 3.09 (d, 1 H, J = 10.1 Hz), 3.45 (dd, 1 H, J = 1.7, 11.9 Hz), 3.58 (dd, 1 H, J = 5.3, 11.9 Hz), 4.56 (dd, 1 H, J = 1.7, 5.3 Hz), 7.35 (d, 2 H, J = 8.2 Hz), 7.68 (d, 2 H, J = 8.2 Hz). 13C NMR (125 MHz, CDCl3): δ = 178.4, 144.5, 132.6, 130.1, 128.0, 86.2, 58.4, 53.7, 47.4, 28.9, 21.8, 20.6, 14.0, 12.3. Compound 4d: (major) 1H NMR (500 MHz, CDCl3): δ = 0.99 (m, 1 H), 1.05 (m, 2 H), 1.33 (m, 1 H), 1.45 (d, 3 H, J = 6.8 Hz), 2.44 (s, 3 H), 2.84 (ddd, 1 H, J = 5.6, 6.2, 7.9 Hz), 3.37 (dd, 1 H, J = 4.5, 7.9 Hz), 3.40 (dd, 1 H, J = 4.5, 6.2 Hz), 4.13 (dq, 1 H, J = 6.2, 7.3 Hz), 4.87 (dd, 1 H, J = 5.6, 7.3 Hz), 7.34 (d, 2 H, J = 8.2 Hz), 7.71 (d, 2 H, J = 8.2 Hz). 13C NMR (125 MHz, CDCl3): δ = 178.7, 144.4, 133.7, 130.1, 127.5, 86.5, 62.1, 51.6, 43.6, 25.6, 21.8, 18.7, 17.9, 12.1. Compound 4d (minor) 1H NMR (500 MHz, CDCl3): δ = 0.88 (m, 1 H), 1.05 (m, 2 H), 1.18 (m, 1 H), 1.37 (d, 3 H, J = 6.7 Hz), 2.42 (s, 3 H), 2.63 (ddd, 1 H, J = 5.1, 6.5, 7.9 Hz), 3.19 (dd, 1 H, J = 7.9, 11.0 Hz), 3.20 (dd, 1 H, J = 5.1, 11.0 Hz), 3.68 (dq, 1 H, J = 6.7, 11.0 Hz), 4.66 (dd, 1 H, J = 6.5, 11.0 Hz), 7.31 (d, 2 H, J = 8.2 Hz), 7.69 (d, 2 H, J = 8.2 Hz). 13C NMR (125 MHz, CDCl3): δ = 177.7, 144.3, 135.1, 130.1, 128.0, 82.8, 60.2, 52.6, 42.0, 24.9, 21.8, 18.2, 15.2, 12.8. Compound 4e: 1H NMR (500 MHz, CDCl3): δ = 1.05 (m, 2 H), 1.25 (t, 3 H, J = 7.0 Hz), 1.26 (t, 3 H, J = 7.0 Hz), 1.27 (m, 1 H), 1.35 (m, 1 H), 2.24 (dd, 1 H, J = 9.3, 13.8 Hz), 2.43 (dd, 1 H, J = 6.2, 13.8 Hz), 2.66 (dd, 1 H, J = 2.5, 14.9 Hz), 2.72 (dd, 1 H, J = 5.9, 14.9 Hz), 2.76 (ddd, 1 H, J = 6.2, 7.0, 9.3 Hz), 5.11 (ddd, 1 H, J = 2.5, 5.9, 7.0 Hz), 4.18 (q, 2 H, J = 7.0 Hz), 4.20 (q, 2 H, J = 7.0 Hz). 13C NMR (125 MHz, CDCl3): δ = 179.5, 171.4, 170.7, 82.4, 62.2, 60.6, 44.8, 41.3, 38.7, 26.5, 18.9, 14.2, 12.7.