Subscribe to RSS
DOI: 10.1055/s-2004-837214
γ-Allenyl Allyl Benzothiazole Sulfonyl Anions Undergo cis-Selective (Sylvestre) Julia Olefinations
Publication History
Publication Date:
17 December 2004 (online)

Abstract
γ-Allenyl allyl benzothiazolyl sulfones 8 and ent-8 provided allenyl trienes and polyenes with cis-selectivities ranging from 71:29 to 100:0 upon condensation (NaHMDS, THF, -78 °C to 25 ºC) with a variety of unsaturated aldehydes.
Key words
Julia olefination - stereoselectivity - allenes - polyenes
- 1 For a review, see:
Blakemore PR. J. Chem. Soc., Perkin Trans. 1 2002, 2563 -
2a
Baudin JB.Hareau G.Julia SA.Ruel O. Tetrahedron Lett. 1991, 32: 1175 -
2b Subsequent studies:
Baudin JB.Hareau G.Julia SA.Ruel O. Bull. Soc. Chim. Fr. 1993, 130: 336 -
2c
Baudin JB.Hareau G.Julia SA.Lorne R.Ruel O. Bull. Soc. Chim. Fr. 1993, 130: 856 - 3
Julia M.Paris J.-M. Tetrahedron Lett. 1973, 4833 -
4a
Blakemore PR.Cole WJ.Kocienski PJ.Morley A. Synlett 1998, 26 -
4b
Kocienski PJ.Bell A.Blakemore PR. Synlett 2000, 365 -
4c
Charette AB.Bethelette C.St-Martin D. Tetrahedron Lett. 2001, 42: 5149 -
4d Corrigendum:
Charette AB.Bethelette C.St-Martin D. Tetrahedron Lett. 2001, 42: 6619 -
5a
Kende AS.Mendoza JS. Tetrahedron Lett. 1990, 31: 7105 -
5b See also:
Markó IE.Murphy F.Dolan S. Tetrahedron Lett. 1996, 37: 2089 - 6
Keck GE.Savin A.Weglarz MA. J. Org. Chem. 1995, 60: 3194 -
7a
Kocienski PJ.Lythgoe B.Ruston S. J. Chem. Soc., Perkin Trans. 1 1978, 829 -
7b
Kocienski PJ.Lythgoe B.Waterhouse I. J. Chem. Soc., Perkin Trans. 1 1980, 1045 - 8
Bellingham R.Jarowicki K.Kocienski PJ.Martin V. Synthesis 1996, 285 - 9
Vaz B.Alvarez R.de Lera AR. J. Org. Chem. 2002, 67: 5040 - 10
Furuichi N.Hara H.Osaki T.Mori H.Katsumura S. Angew. Chem. Int. Ed. 2002, 41: 1023 - 12
Sorg A.Brückner R. Synlett 2005, preceding paper -
13a
Stille JK. Pure Appl. Chem. 1985, 57: 1771 -
13b
Stille JK. Angew. Chem., Int. Ed. Engl. 1986, 25: 508 -
13c
Farina V. In Comprehensive Organometallic Chemistry II Vol. 12:Abel EW.Stone FGA.Wilkinson G. Elsevier; Oxford: 1995. Chap. 3.4. p.161 -
13d
Farina V. Pure Appl. Chem. 1996, 68: 73 -
13e
Farina V.Roth GP. In Advances in Metal-Organic Chemistry Vol. 5:Liebeskind LS. JAI Press; New York: 1996. p.1 -
13f
Farina V.Krishnamurthy V.Scott WJ. Org. React. 1997, 50: 1 -
13g
Duncton MAJ.Pattenden G. J. Chem. Soc., Perkin Trans. 1 1999, 1235 - 15
Lipshutz BH.Kozlowski JA.Wilhelm RS. J. Org. Chem. 1984, 49: 3943 - 16
Blakemore PR.Kocienski PJ.Morley A.Muir K. J. Chem. Soc., Perkin Trans. 1 1999, 955 - 17
Schultz HS.Freyermuth HB.Buc SR. J. Org. Chem. 1963, 28: 1140 -
18a
Bernard N.Chemla F.Normant JF. Tetrahedron Lett. 1998, 39: 8837 -
18b For propargyl alcohols, see:
Black DK.Landor SR.Patel AN.Whiter PF. Tetrahedron Lett. 1963, 483 - 19
Sharpless KB. In Comprehensive Organic Synthesis Vol. 7:Trost BM.Fleming I. Pergamon Press; Oxford: 1991. p.389-436 - 20
Crombie BS.Smith C.Varnavas CZ.Wallace TW. J. Chem. Soc., Perkin Trans. 1 2001, 2: 206 - 21
Abad A.Agulló C.Arnó M.Cuñat AC.Zaragoza RJ. Synlett 1993, 895 -
22a
Mancuso AJ.Swern D. Synthesis 1981, 165 -
22b
Tidwell TT. Org. React. 1990, 39: 297 - 23
Colvin EW.Hamill BJ. J. Chem. Soc., Chem. Commun. 1973, 151 - Synthesis of non-commercial aldehydes 12:
-
24a See for 12a:
Fliegel F.Beaudet I.Quintard J.-P. J. Organomet. Chem. 2001, 624: 383 -
24b See for 12d: The sequence is provided below (Scheme 4); alternative preparation:
Cole KP.Hsung RP. Org. Lett. 2003, 5: 4843 -
24c See for 12f: The sequence is provided below (Scheme 5); alternative preparation:
van Wijk AAC.Lugtenburg J. Eur. J. Org. Chem. 2002, 4217 -
24d
See for 12g: This vinylogous epoxy-retinal butenolide was acquired by inversion of the steps leading to the ring-deoxygenated peridinin skeleton (see ref. 11): Vaz, B.; Alvarez, R.; de Lera, A. R., manuscript in preparation.
Scheme 4
Scheme 5
- 28
Smith AB.Wan Z. J. Org. Chem. 2000, 65: 3738
References
Vaz, B.; Alvarez, R.; Brückner, R.; de Lera, A. R., submitted.
14All new compounds gave satisfactory spectroscopic data and correct combustion analysis or HRMS.
25Data for 13f: 1H NMR (600 MHz, CDCl3): δ = 9.45 (s, 1 H, CHO), 6.98 (dd, J = 14.4, 11.8 Hz, 1 H, H15), 6.95 (d, J = 11.9 Hz, 1 H, H14 ′), 6.68 (dd, J = 14.4, 11.7 Hz, 1 H, H15 ′), 6.59 (d, J = 12.1 Hz, 1 H, H10), 6.38 (t, J = 12.0 Hz, 1 H, H11), 6.33 (d, J = 12.1 Hz, 1 H, H14), 6.11 (s, 1 H, H8), 5.95 (d, J = 11.9 Hz, 1 H, H12), 2.13 (s, 3 H, C13-CH3), 1.90-1.80 (m, 1 H, H3), 1.87 (s, 3 H, C13 ′-CH3), 1.85 (s, 3 H, C9-CH3), 1.80-1.70 (m, 1 H, H2 or H4), 1.60-1.50 (m, 3 H, H2 + H3 + H4), 1.40-1.30 (m, 1 H, H2 or H4), 1.32 (s, 3 H, C5-CH3), 1.27 (s, 3 H, C1-CH3), 1.04 (s, 3 H, C1-CH3) ppm. MS (EI+): m/z (%) = 367 (27) [M+ + 1], 366 (100) [M+], 322 (35), 281 (41), 202 (28), 157 (36), 111 (37), 109 (32), 99 (27), 97 (60), 95 (27), 85 (61), 83 (62), 81 (30), 71 (80), 69 (85). HRMS (EI+): m/z calcd for C25H34O2: 366.2559; found: 366.2555. FT-IR (NaCl): ν = 3600-3400 (br, OH), 2960 (s, C-H), 2923 (s, C-H), 2853 (m, C-H), 1930 (w, C=C=C), 1731 (s, C=O), 1662 (s), 1552 (m), 1261 (s) cm-1. UV (MeOH): λmax = 294, 416 nm (Figure [1] ).
Figure 1
Data for 13g: 1H NMR [600 MHz, (CD3)2CO]: δ = 7.50 (s, 1 H, H10), 7.17 (d, J = 15.6 Hz, 1 H, H7), 7.10 (t, J = 12.8 Hz, 1 H, H15 ′), 6.76 (t, J = 12.3 Hz, 1 H, H15), 6.70-6.60 (m, 2 H, H10 ′ + H14), 6.47 (t, J = 10.4 Hz, 1 H, H11 ′), 6.42 (d, J = 15.6 Hz, 1 H, H8), 6.22 (t, J = 11.5 Hz, 1 H, H14 ′), 6.18 (s, 1 H, H8 ′), 6.00 (s, 1 H, H12), 3.54 (s, 1 H, OH), 2.21 (d, J = 6.0 Hz, 3 H, C13-CH3), 2.00 (m, 1 H, H3 ′), 1.89 (s, 3 H, C9 ′-CH3), 1.90-1.80 (m, 2 H, H4 ′ + H4), 1.60-1.50 (m, 1 H, H2 ′), 1.50-1.30 (m, 7 H, H3 ′ + H2 ′ + H4 ′ + H2 + 2 H3 + H4), 1.36 (s, 3 H, C1 ′-CH3), 1.28 (s, 3 H, C5 ′-CH3), 1.16 (s, 3 H, C1-CH3), 1.13 (s, 3 H, C5-CH3), 1.10-1.00 (m, 1 H, H2), 1.01 (s, 3 H, C1 ′-CH3), 0.91 (s, 3 H, C1-CH3) ppm. 13C NMR [100 MHz, (CD3)2CO]: δ = 204.4 (s, C7 ′), 170.2 (s, C=O), 149.1 (s, C11), 139.8 (d, C14), 138.7 (d, C10), 137.9 (s, C9 ′), 135.7 (s, C13), 135.3 (d, C7), 134.1 (d, C15 ′), 131.5 (d, C15), 130.4 (d, C12 ′), 129.6 (d, C11 ′), 126.5 (s, C9), 124.4 (d, C10 ′), 123.6 (d, C8), 121.3 (s, C6 ′), 120.5 (d, C12), 104.4 (d, C8 ′), 72.7 (s, C6), 71.7 (s, C5 ′), 67.3 (s, C5), 42.6 (t, C4 ′), 42.4 (t, C2 ′), 37.5 (t, C2), 36.2 (s, C1 ′), 35.3 (s, C1), 33.6 (q, C1 ′-CH3), 32.6 (q, C5 ′-CH3), 31.7 (t, C4), 30.2 (q, C1 ′-CH3), 27.4 (q, C1-CH3), 27.1 (q, C1-CH3), 22.0 (q, C5-CH3), 20.0 (t, C3 ′), 18.7 (t, C3), 16.5 (q, C13-CH3), 15.2 (q, C9 ′-CH3) ppm. MS (FAB+): m/z (%) = 558 (10) [M+ + 2], 557 (11) [M+ + 1], 556 (85) [M+], 540 (12), 539 (26), 394 (15), 393 (26), 322 (27), 307 (29), 289 (20), 241 (12), 165 (27). HRMS (FAB+): m/z calcd for C37H49O4: 557.3631; found: 557.3613. FT-IR (NaCl): ν = 3600-3400 (br, OH), 2961 (s, C-H), 2923 (s, C-H), 2849 (m, C-H), 1926 (w, C=C=C), 1749 (s, C=O), 1521 (w), 1449 (w) cm-1 (Figure [2] ).
Figure 2
Determined by 2D HMQC-TOCSY. Although the geometry of 1,ω-bis(tributylstannyl)-1,3,5,7,9-decapentaene (16) reported by our group was in error (ref.9), the structures of the final carotenoids β,β-carotene and (3R,3′R)-zeaxanthin obtained by Stille coupling of 16 with the corresponding trienyliodides are correct. Isomerization takes place at the carotenoid stage by the action of palladium, since reagent 16 is stable to the Stille coupling reaction conditions.