References
1 For a review, see: Blakemore PR.
J. Chem. Soc., Perkin Trans. 1
2002,
2563
2a
Baudin JB.
Hareau G.
Julia SA.
Ruel O.
Tetrahedron Lett.
1991,
32:
1175
2b Subsequent studies: Baudin JB.
Hareau G.
Julia SA.
Ruel O.
Bull. Soc. Chim. Fr.
1993,
130:
336
2c
Baudin JB.
Hareau G.
Julia SA.
Lorne R.
Ruel O.
Bull. Soc. Chim. Fr.
1993,
130:
856
3
Julia M.
Paris J.-M.
Tetrahedron Lett.
1973,
4833
4a
Blakemore PR.
Cole WJ.
Kocienski PJ.
Morley A.
Synlett
1998,
26
4b
Kocienski PJ.
Bell A.
Blakemore PR.
Synlett
2000,
365
4c
Charette AB.
Bethelette C.
St-Martin D.
Tetrahedron Lett.
2001,
42:
5149
4d Corrigendum: Charette AB.
Bethelette C.
St-Martin D.
Tetrahedron Lett.
2001,
42:
6619
5a
Kende AS.
Mendoza JS.
Tetrahedron Lett.
1990,
31:
7105
5b See also: Markó IE.
Murphy F.
Dolan S.
Tetrahedron Lett.
1996,
37:
2089
6
Keck GE.
Savin A.
Weglarz MA.
J. Org. Chem.
1995,
60:
3194
7a
Kocienski PJ.
Lythgoe B.
Ruston S.
J. Chem. Soc., Perkin Trans. 1
1978,
829
7b
Kocienski PJ.
Lythgoe B.
Waterhouse I.
J. Chem. Soc., Perkin Trans. 1
1980,
1045
8
Bellingham R.
Jarowicki K.
Kocienski PJ.
Martin V.
Synthesis
1996,
285
9
Vaz B.
Alvarez R.
de Lera AR.
J. Org. Chem.
2002,
67:
5040
10
Furuichi N.
Hara H.
Osaki T.
Mori H.
Katsumura S.
Angew. Chem. Int. Ed.
2002,
41:
1023
12
Sorg A.
Brückner R.
Synlett
2005, preceding paper
13a
Stille JK.
Pure Appl. Chem.
1985,
57:
1771
13b
Stille JK.
Angew. Chem., Int. Ed. Engl.
1986,
25:
508
13c
Farina V. In Comprehensive Organometallic Chemistry II
Vol. 12:
Abel EW.
Stone FGA.
Wilkinson G.
Elsevier;
Oxford:
1995.
Chap. 3.4.
p.161
13d
Farina V.
Pure Appl. Chem.
1996,
68:
73
13e
Farina V.
Roth GP. In Advances in Metal-Organic Chemistry
Vol. 5:
Liebeskind LS.
JAI Press;
New York:
1996.
p.1
13f
Farina V.
Krishnamurthy V.
Scott WJ.
Org. React.
1997,
50:
1
13g
Duncton MAJ.
Pattenden G.
J. Chem. Soc., Perkin Trans. 1
1999,
1235
15
Lipshutz BH.
Kozlowski JA.
Wilhelm RS.
J. Org. Chem.
1984,
49:
3943
16
Blakemore PR.
Kocienski PJ.
Morley A.
Muir K.
J. Chem. Soc., Perkin Trans. 1
1999,
955
17
Schultz HS.
Freyermuth HB.
Buc SR.
J. Org. Chem.
1963,
28:
1140
18a
Bernard N.
Chemla F.
Normant JF.
Tetrahedron Lett.
1998,
39:
8837
18b For propargyl alcohols, see: Black DK.
Landor SR.
Patel AN.
Whiter PF.
Tetrahedron Lett.
1963,
483
19
Sharpless KB. In Comprehensive Organic Synthesis
Vol. 7:
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
p.389-436
20
Crombie BS.
Smith C.
Varnavas CZ.
Wallace TW.
J. Chem. Soc., Perkin Trans. 1
2001,
2:
206
21
Abad A.
Agulló C.
Arnó M.
Cuñat AC.
Zaragoza RJ.
Synlett
1993,
895
22a
Mancuso AJ.
Swern D.
Synthesis
1981,
165
22b
Tidwell TT.
Org. React.
1990,
39:
297
23
Colvin EW.
Hamill BJ.
J. Chem. Soc., Chem. Commun.
1973,
151
Synthesis of non-commercial aldehydes 12 :
24a See for 12a : Fliegel F.
Beaudet I.
Quintard J.-P.
J. Organomet. Chem.
2001,
624:
383
24b See for 12d : The sequence is provided below (Scheme 4); alternative preparation: Cole KP.
Hsung RP.
Org. Lett.
2003,
5:
4843
24c See for 12f : The sequence is provided below (Scheme 5); alternative preparation: van Wijk AAC.
Lugtenburg J.
Eur. J. Org. Chem.
2002,
4217
24d See for 12g : This vinylogous epoxy-retinal butenolide was acquired by inversion of the steps leading to the ring-deoxygenated peridinin skeleton (see ref. 11): Vaz, B.; Alvarez, R.; de Lera, A. R., manuscript in preparation.
Scheme 4
Scheme 5
28
Smith AB.
Wan Z.
J. Org. Chem.
2000,
65:
3738
11 Vaz, B.; Alvarez, R.; Brückner, R.; de Lera, A. R., submitted.
14 All new compounds gave satisfactory spectroscopic data and correct combustion analysis or HRMS.
25 Data for 13f : 1 H NMR (600 MHz, CDCl3 ): δ = 9.45 (s, 1 H, CHO), 6.98 (dd, J = 14.4, 11.8 Hz, 1 H, H15 ), 6.95 (d, J = 11.9 Hz, 1 H, H14
′ ), 6.68 (dd, J = 14.4, 11.7 Hz, 1 H, H15
′ ), 6.59 (d, J = 12.1 Hz, 1 H, H10 ), 6.38 (t, J = 12.0 Hz, 1 H, H11 ), 6.33 (d, J = 12.1 Hz, 1 H, H14 ), 6.11 (s, 1 H, H8 ), 5.95 (d, J = 11.9 Hz, 1 H, H12 ), 2.13 (s, 3 H, C13 -CH3), 1.90-1.80 (m, 1 H, H3 ), 1.87 (s, 3 H, C13
′ -CH3 ), 1.85 (s, 3 H, C9 -CH3 ), 1.80-1.70 (m, 1 H, H2 or H4 ), 1.60-1.50 (m, 3 H, H2 + H3 + H4 ), 1.40-1.30 (m, 1 H, H2 or H4 ), 1.32 (s, 3 H, C5 -CH3 ), 1.27 (s, 3 H, C1 -CH3 ), 1.04 (s, 3 H, C1 -CH3 ) ppm. MS (EI+ ): m/z (%) = 367 (27) [M+ + 1], 366 (100) [M+ ], 322 (35), 281 (41), 202 (28), 157 (36), 111 (37), 109 (32), 99 (27), 97 (60), 95 (27), 85 (61), 83 (62), 81 (30), 71 (80), 69 (85). HRMS (EI+ ): m/z calcd for C25 H34 O2 : 366.2559; found: 366.2555. FT-IR (NaCl): ν = 3600-3400 (br, OH), 2960 (s, C-H), 2923 (s, C-H), 2853 (m, C-H), 1930 (w, C=C=C), 1731 (s, C=O), 1662 (s), 1552 (m), 1261 (s) cm-1 . UV (MeOH): λmax = 294, 416 nm (Figure
[1 ]
).
Figure 1
26 Data for 13g : 1 H NMR [600 MHz, (CD3 )2 CO]: δ = 7.50 (s, 1 H, H10 ), 7.17 (d, J = 15.6 Hz, 1 H, H7 ), 7.10 (t, J = 12.8 Hz, 1 H, H15
′ ), 6.76 (t, J = 12.3 Hz, 1 H, H15 ), 6.70-6.60 (m, 2 H, H10
′ + H14 ), 6.47 (t, J = 10.4 Hz, 1 H, H11
′ ), 6.42 (d, J = 15.6 Hz, 1 H, H8 ), 6.22 (t, J = 11.5 Hz, 1 H, H14
′ ), 6.18 (s, 1 H, H8
′ ), 6.00 (s, 1 H, H12 ), 3.54 (s, 1 H, OH), 2.21 (d, J = 6.0 Hz, 3 H, C13 -CH3 ), 2.00 (m, 1 H, H3
′ ), 1.89 (s, 3 H, C9
′ -CH3 ), 1.90-1.80 (m, 2 H, H4
′ + H4 ), 1.60-1.50 (m, 1 H, H2
′ ), 1.50-1.30 (m, 7 H, H3
′ + H2
′ + H4
′ + H2 + 2 H3 + H4 ), 1.36 (s, 3 H, C1
′ -CH3 ), 1.28 (s, 3 H, C5
′ -CH3 ), 1.16 (s, 3 H, C1 -CH3 ), 1.13 (s, 3 H, C5 -CH3 ), 1.10-1.00 (m, 1 H, H2 ), 1.01 (s, 3 H, C1
′ -CH3 ), 0.91 (s, 3 H, C1 -CH3 ) ppm. 13 C NMR [100 MHz, (CD3 )2 CO]: δ = 204.4 (s, C7
′ ), 170.2 (s, C=O), 149.1 (s, C11 ), 139.8 (d, C14 ), 138.7 (d, C10 ), 137.9 (s, C9
′ ), 135.7 (s, C13 ), 135.3 (d, C7 ), 134.1 (d, C15
′ ), 131.5 (d, C15 ), 130.4 (d, C12
′ ), 129.6 (d, C11
′ ), 126.5 (s, C9 ), 124.4 (d, C10
′ ), 123.6 (d, C8 ), 121.3 (s, C6
′ ), 120.5 (d, C12 ), 104.4 (d, C8
′ ), 72.7 (s, C6 ), 71.7 (s, C5
′ ), 67.3 (s, C5 ), 42.6 (t, C4
′ ), 42.4 (t, C2
′ ), 37.5 (t, C2 ), 36.2 (s, C1
′ ), 35.3 (s, C1 ), 33.6 (q, C1
′ -CH3 ), 32.6 (q, C5
′ -CH3 ), 31.7 (t, C4 ), 30.2 (q, C1
′ -CH3 ), 27.4 (q, C1 -CH3 ), 27.1 (q, C1 -CH3 ), 22.0 (q, C5 -CH3 ), 20.0 (t, C3
′ ), 18.7 (t, C3 ), 16.5 (q, C13 -CH3 ), 15.2 (q, C9
′ -CH3 ) ppm. MS (FAB+ ): m/z (%) = 558 (10) [M+ + 2], 557 (11) [M+ + 1], 556 (85) [M+ ], 540 (12), 539 (26), 394 (15), 393 (26), 322 (27), 307 (29), 289 (20), 241 (12), 165 (27). HRMS (FAB+ ): m/z calcd for C37 H49 O4 : 557.3631; found: 557.3613. FT-IR (NaCl): ν = 3600-3400 (br, OH), 2961 (s, C-H), 2923 (s, C-H), 2849 (m, C-H), 1926 (w, C=C=C), 1749 (s, C=O), 1521 (w), 1449 (w) cm-1 (Figure
[2 ]
).
Figure 2
27 Determined by 2D HMQC-TOCSY. Although the geometry of 1,ω-bis(tributylstannyl)-1,3,5,7,9-decapentaene (16 ) reported by our group was in error (ref.9 ), the structures of the final carotenoids β,β-carotene and (3R ,3′R )-zeaxanthin obtained by Stille coupling of 16 with the corresponding trienyliodides are correct. Isomerization takes place at the carotenoid stage by the action of palladium, since reagent 16 is stable to the Stille coupling reaction conditions.