References
1
Moreno-Mañas M.
Spengler J.
Tetrahedron
2002,
58:
7769
For reviews on 15-membered triolefinic macrocycles of type 1 see:
2a
Moreno-Mañas M.
Pleixats R.
Sebastián RM.
Vallribera A.
Roglans A.
ARKIVOC
2004,
iv:
109 ; available from http://www.arkat-usa.org
2b
Moreno-Mañas M.
Pleixats R.
Sebastián RM.
Vallribera A.
Roglans A.
J. Organomet. Chem.
2004,
689:
3669
3 Compound 2a (72%): mp 230 °C. Compound 2b (40%): oil. Compound 2c (65%): mp 84-85 °C.
4
March J.
Advanced Organic Chemistry. Reactions, Mechanism, and Structure
4th ed.:
Wiley-Interscience;
New York:
1992.
Chap. 13.
p.641-676
5
Hansch C.
Leo A.
Taft RW.
Chem. Rev.
1991,
91:
165
6a
Navidpour L.
Karimi L.
Amini M.
Vosooghi M.
Shafiee A.
J. Heterocycl. Chem.
2004,
41:
201
6b
Wang C.-C.
Li JJ.
Huang H.-C.
Lee LF.
Reitz DB.
J. Org. Chem.
2000,
65:
2711
6c
You F.
Twieg RJ.
Tetrahedron Lett.
1999,
40:
8759
6d
Smith WJ.
Scott Sawyer J.
Tetrahedron Lett.
1996,
37:
299
6e
Miller AO.
Furin GG.
J. Fluorine Chem.
1995,
75:
169
7a
Koyama H.
Boueres JK.
Han W.
Metzger EJ.
Bergman JP.
Gratale DF.
Miller DJ.
Tolman RL.
MacNaul KL.
Berger JP.
Doebber TW.
Leung K.
Moller DE.
Heck JV.
Sahoo SP.
Biorg. Med. Chem. Lett.
2003,
13:
1801
7b
Zask A.
Jirkovsky I.
Nowicki JW.
McCaleb ML.
J. Med. Chem.
1990,
33:
1418
7c
Markley LD.
Tong YC.
Dulworth JK.
Steward DL.
Goralski CT.
Johnston H.
Wood SG.
Vinogradoff AP.
Bargar TM.
J. Med. Chem.
1986,
29:
427
7d
Idoux JP.
Madenwald ML.
Garcia BS.
Chu D.-L.
Gupton JT.
J. Org. Chem.
1985,
50:
1876
8
Baxter I.
Ben-Haida A.
Colquhoun HM.
Hodge P.
Kohnke FH.
Williams DJ.
Chem.-Eur. J.
2000,
6:
4285
For examples with nitrogen nucleophiles see:
9a
Pal M.
Madan M.
Padakanti S.
Pattabiraman VR.
Kalleda S.
Vanguri A.
Mullangi R.
Rao Mamidi NVS.
Casturi SR.
Malde A.
Gopalakrishnan B.
Yeleswarapu KR.
J. Med. Chem.
2003,
46:
3975
9b
Tollefson MB.
Kolodziej SA.
Fletcher TR.
Vernier WF.
Beaudry JA.
Keller BT.
Reitz DB.
Bioorg. Med. Chem. Lett.
2003,
13:
3727
9c
Levin JI.
Chen JM.
Cheung K.
Cole D.
Crago C.
Delos Santos E.
Du X.
Khafizova G.
MacEwan G.
Niu C.
Salaski EJ.
Zask A.
Cummons T.
Sung A.
Xu J.
Zhang Y.
Xu W.
Ayral-Kaloustian S.
Jin G.
Cowling R.
Barone D.
Mohler KM.
Black RA.
Skotnicki JS.
Biorg. Med. Chem. Lett.
2003,
13:
2799
9d
Steffan RJ.
Ashwell MA.
Solvibile WR.
Matelan E.
Largis E.
Han S.
Tillet J.
Mulvey R.
Bioorg. Med. Chem. Lett.
2002,
12:
2963
9e
Morgan TK.
Lis R.
Lumma WC.
Nickisch K.
Wohl RA.
Phillips GB.
Gomez RP.
Lampe JW.
Di Meo SV.
Marisca AJ.
Forst J.
J. Med. Chem.
1990,
33:
1091
9f For example with oxygen nucleophile see: Levin JI.
Du MT.
Synth. Commun.
2002,
32:
1401
9g For example with sulfur nucleophile see ref. 9c.
10 Compound 3, mp 39-40 °C, was prepared by reaction of 4-fluorobenzenesulfonyl chloride with diethylamine in CH2Cl2.
11
Method A of Table 1. Typical Experiment:
A 1.6 M solution of n-BuLi in hexane (3.4 mL, 5.34 mmol) was added dropwise into a solution of di-n-octyl amine (1.1 mL, 3.56 mmol) in anhyd THF (3 mL) cooled at -40 °C (MeCN-liquid nitrogen bath). The mixture was stirred at -40 °C for 15 min. Then, a solution of sulphonamide 3 (0.82 g, 3.56 mmol) in anhyd THF (5 mL) was added. The mixture was stirred at r.t. for one day and evaporated. The residue was partitioned between CHCl3 and diluted HCl, the organic layer was dried (Na2SO4) and evaporated to afford 1.6 g (ca. 100%) of 4b as an ochre oil. IR (Attenuated Total Reflectance, ATR): 2924, 2853, 1594, 1333, 1147 cm-1. 1H NMR (250 MHz, CDCl3): δ = 0.88 (t, J = 6.6 Hz, 6 H), 1.12 (t, J = 7.2 Hz, 6 H), 1.29 (m, 20 H), 1.57 (m, 4 H), 3.18 (q, J = 7.2 Hz, 4 H), 3.26 (t, J = 7.1, 4 H), 6.56 (d, J = 9.1 Hz, 2 H), 7.57 (d, J = 9.1 Hz, 2 H). 13C NMR (62.5 MHz, CDCl3): δ = 14.2, 14.4, 22.7, 27.2, 29.4, 29.5, 31.9, 42.1, 51.1, 110.5, 124.7, 129.1, 150.8. Anal. Calcd for C26H48N2O2S: C, 68.98; H, 10.69; N, 6.19; S, 7.08. Found: C, 68.79; H, 10.69; N 6.05; S, 6.74.
Good elemental analyses (at least three elements) were secured for 4b,c,e-g (with 0.5 mol of H2O), and 4d (as picrate, mp 109-110 °C). Product 4a: HRMS: m/z calcd for C16H28N2O2S: 312.1871; found: 312.1867.
12 When our work was finished a paper was published on similar results obtained with 2-fluoropyridine: Pasumansky L.
Hernández AR.
Gamsey S.
Goralski CT.
Singaram B.
Tetrahedron Lett.
2004,
45:
6417
13
Method C of Table 2; Typical Experiment
A solution of 3 (1.05 g, 4.55 mmol) and tetrabutyl-ammonium chloride (1.52 g, 5.2 mmol) in anhyd THF
(5.5 mL) was added under argon via cannula to a stirred suspension of sodium phenolate in anhyd THF (4 mL), made from NaH (60% suspension in mineral oil, 0.30 g, 7.55 mmol) and phenol (0.52 g, 5.52 mmol). The mixture was stirred overnight and MeOH (2 mL) was added. The solvents were evaporated and the residue was taken in EtOAc. The organic solution was washed with 5% aq NaOH, dried (Na2SO4), and evaporated to afford a dark yellow oil that crystallized upon standing (83%). It was recrystallized from t-butyl methyl ether to afford pure 5d (52%); mp 80-82 °C. IR (ATR): 3090, 2972, 2932, 2879, 1579, 1491, 1332, 1238, 1200, 1169, 1089, 1014, 934 cm-1. 1H NMR (250 MHz, CDCl3): δ = 1.14 (t, J = 7.0 Hz, 3 H), 3.23 (q, J = 7.0 Hz, 4 H), 7.02 (d, J = 9.0 Hz, 2 H), 6.94-7.08 (m, 2 H), 7.21 (tt, J = 6.9 and 1.2 Hz, 1 H), 7.40 (m, 2 H), 7.75 (d, J = 9.0 Hz, 2 H). 13C NMR (62.5 MHz, CDCl3): δ = 14.2, 42.0, 117.6, 120.2, 124.8, 129.1, 130.1, 134.2, 155.3, 161.1. HRMS calcd for C16H19NO3S: 305.1086; found: 305.1100.
Good elemental analyses (at least three elements) were secured for 5a-c, 6a-d, and 7.
For recent examples on the use of cesium compounds in related substitutions see the following references.
14a CsOH: Varala R.
Ramu E.
Alam MM.
Adapa SR.
Synlett
2004,
1747
14b Cs2CO3: Cui S.-L.
Jiang Z.-Y.
Wang Y.-G.
Synlett
2004,
1829