References
1
Grubbs RH.
Chang S.
Tetrahedron
1998,
54:
4413
2
Fürstner A.
Angew. Chem. Int. Ed.
2000,
39:
3012
3
Schrock RR.
Hoveyda AH.
Angew. Chem. Int. Ed.
2003,
42:
4592
4
Poulsen CS.
Madsen R.
Synthesis
2003,
1
5
Diver ST.
Giessert AJ.
Chem. Rev.
2004,
104:
1317
6
McReynolds MD.
Dougherty JM.
Hanson PR.
Chem. Rev.
2004,
104:
2239
7
Rivard M.
Blechert S.
Eur. J. Org. Chem.
2003,
2225
8a
Deiters A.
Martin SF.
Chem. Rev.
2004,
104:
2199
8b
Felpin F.-X.
Lebreton J.
Eur. J. Org. Chem.
2003,
3693
8c
Ono K.
Nagata T.
Nishida A.
Synlett
2003,
1207
8d
Humphries ME.
Murphy J.
Phillips AJ.
Abell AD.
J. Org. Chem.
2003,
68:
2432
8e
Habib-Zahmani H.
Hacini S.
Charonnet E.
Rodriguez J.
Synlett
2002,
1827
8f
Grossmith CE.
Senia F.
Wagner J.
Synlett
1999,
1660
8g
Diedrichs N.
Westermann B.
Synlett
1999,
1127
8h
Irie O.
Samizu K.
Henry JR.
Weinreb SM.
J. Org. Chem.
1999,
64:
587
9a
Jun JH.
Dougherty JM.
del Sol Jimenez M.
Hanson PR.
Tetrahedron
2003,
59:
8901
9b
Karsch S.
Freitag D.
Schwab P.
Metz P.
Synthesis
2004,
1696
10a
Grigg R.
Sridharan V.
York M.
Tetrahedron Lett.
1998,
39:
4139
10b
Grigg R.
York M.
Tetrahedron Lett.
2000,
41:
7255
10c
Evans P.
McCabe T.
Morgan BS.
Reau S.
Org. Lett.
2005,
7:
43
11a
Bressy C.
Piva O.
Synlett
2003,
87
11b
Virolleaud MA.
Bressy C.
Piva O.
Tetrahedron Lett.
2003,
44:
8081
11c
Virolleaud MA.
Piva O.
Synlett
2004,
2087
12a
Clive DLJ.
Cheng H.
Chem. Commun.
2001,
605
12b
Quayle P.
Fengas D.
Richards S.
Synlett
2003,
1797
13
Alcaide B.
Almendros P.
Chem.-Eur. J.
2003,
9:
1258 ; and references therein
14
Sutton AE.
Seigal BA.
Finnegan DF.
Snapper ML.
J. Am. Chem. Soc.
2002,
124:
13390
15a
Schmidt B.
Eur. J. Org. Chem.
2003,
816
15b
Schmidt B.
Chem. Commun.
2004,
742
15c
Schmidt B.
Eur. J. Org. Chem.
2004,
1865
15d
Schmidt B.
J. Org. Chem.
2004,
69:
7672
16
Preparation of the N
,
N
-Bisallylamides 2.
To a solution of acid (2 mmol) in CH2Cl2 (4 mL) were successively added DMAP (0.073 g, 0.6 mmol) and bisallylamine (0.195 g, 2 mmol). The reaction was next cooled to 0 °C and a solution of dicyclohexylcarbodiimide (0.412 g, 2 mmol) in the same solvent (1 mL) was added dropwise. After stirring 10 min at 0 °C, the ice-water bath was removed and the mixture stirred overnight at r.t. Urea was filtered off and the solvent removed by concentration under vacuo. Amide 2 was obtained pure by flash chromatography (eluent: EtOAc-hexanes 10:90).
Compound 2a (95%): 1H NMR (CDCl3): δ = 3.65 (d, J = 4.5 Hz, 2 H), 3.75 (dd, J = 15.2, 6.8 Hz, 1 H), 4.48 (dd, J = 15.2, 3.7 Hz, 1 H), 5.03 (dd, J = 1.3, 16.9 Hz, 1 H), 5.10 (dd, J = 11.5, 1.3 Hz, 1 H), 5.18 (dd, J = 10.1, 1.3 Hz, 1 H), 5.23 (dd, J = 17.9, 1.3 Hz, 1 H), 5.59 (ddt, J = 16.9, 10.1, 5.8 Hz, 1 H), 5.83 (ddt, J = 16.9, 10.1, 5.4 Hz, 1 H), 7.13-7.31 (m, 3 H), 7.50 (d, J = 7.9 Hz, 1 H). 13C NMR (CDCl3): δ = 46.70, 50.60, 118.50, 118.51, 119.50, 127.90, 128.00, 130.60, 132.80, 133.00, 133.20, 138.50, 169.40. IR (film): 3080, 2923, 1637, 1415, 1285, 1115, 995, 925, 770 cm-1.
Compound 2d (63%): 1H NMR (CDCl3): δ = 3.74 (d, J = 5.6 Hz, 2 H), 3.80 (m, 1 H), 4.35-4.55 (m, 1 H), 5.11 (ddt, J = 17.0, 1.5, 1.5 Hz, 1 H), 5.18 (ddt, J = 10.2, 1.5, 1.5 Hz, 1 H), 5.23 (ddt, J = 10.4, 1.5, 1.5 Hz, 1 H), 5.27 (ddt, J = 15.6, 1.5, 1.5 Hz, 1 H), 5.67 (ddt, J = 17.0, 10.4, 5.6 Hz, 1 H), 5.87 (ddt, J = 16.4, 10.2, 6.0 Hz, 1 H), 6.00 (s, 2 H), 6.71 (s, 1 H), 6.98 (s, 1 H). 13C NMR (CDCl3): δ = 46.7, 50.5, 102.4, 107.8, 110.4, 113.1, 118.4, 131.3, 132.6, 133.0, 147.7, 149.1, 168.9. HRMS: m/z calcd [MH+]: 324.02353; found: 324.02315.
To a solution of N-allyl-2-bromobenzene sulphonamide (5a, 276 mg, 1 mmol) in MeCN (4 mL) was added 4-bromo-butene (148 mg, 1.1 mmol) and K2CO3 (553 mg, 4 mmol). The resulting suspension was heated for 16 h. After filtration and concentration, the product was purified by flash chromatography (eluent: EtOAc-hexanes 10:90).
Compound 5c (86%): 1H NMR (CDCl3): δ = 2.27 (t, J = 7.4 Hz, 2 H), 3.36 (t, J = 7.4 Hz, 2 H), 3.99 (d, J = 6.4 Hz, 2 H), 4.95-5.15 (m, 2 H), 5.15-5.35 (m, 2 H), 5.59-5.85 (m, 2 H), 7.37 (dt, J = 1.8, 7.5 Hz, 1 H), 7.45 (dt, J = 1.8, 7.5 Hz, 1 H), 7.75 (dd, J = 7.5, 1.3 Hz, 1 H), 8.18 (dd, J = 8.7, 2.1 Hz, 1 H). 13C NMR (CDCl3): δ = 32.7, 46.6, 50.3, 117.5, 119.3, 120.7, 127.9, 132.5, 133.4, 133.9, 134.8, 136.0, 139.8. IR (film): 3070, 2985, 1640, 1575, 1445, 1340, 1155, 915, 755 cm-1.
17
Rigby JH.
Cavezza A.
Heeg MJ.
J. Am. Chem. Soc.
1998,
120:
3664
18
Meyers AI.
Flisak JR.
Aitken RA.
J. Am. Chem. Soc.
1987,
109:
5446
19
Brown E.
Robin J.-P.
Dhal R.
Tetrahedron
1982,
38:
2569
20
Selvamurugan V.
Aidhen IS.
Synthesis
2001,
2239
21
Metathesis and Isomerization of Amides 2, Typical Procedure.
To a solution of amide 2a (140 mg, 0.5 mmol) in toluene was added first generation Grubbs’ catalyst (11 mg, 2.5% mol). After stirring at r.t. for 1 h and complete disappearance of the starting material, NaH (7 mg, 1.5 mmol) was added at once and the mixture was heated to reflux. A new addition of both Grubbs’ catalyst (11 mg, 2.5% mol) and NaH (7 mg, 1.5 mmol) was performed after 12 h of heating and this sequence was repeated three times more. After cooling to r.t., the solvent was removed by concentration and the resulting crude mixture was purified by flash chromatography on silica (eluent: hexanes-EtOAc 7:3).
Compound 7a (72%): 1H NMR (CDCl3) 2 rotamers (ratio 4.2:1): δ (major rotamer) = 2.76 (dt, J = 8.6, 2.4 Hz, 2 H), 4.07 (t, J = 9.0 Hz, 2 H), 5.23 (dt, J = 4.3, 2.4 Hz, 1 H), 6.02 (dt, J = 6.4, 1.2 Hz, 1 H), 7.35 (m, 3 H), 7.60 (d, J = 7.5 Hz, 1 H); δ (minor rotamer) = 2.76 (dt, J = 8.6, 2.4 Hz, 2 H), 3.58 (t, J = 9.0 Hz, 2 H), 5.42 (dt, J = 4.3, 2.4 Hz, 1 H), 7.11 (dt, J = 6.4, 2.1 Hz, 1 H), 7.35 (m, 3 H), 7.60 (d, J = 7.5 Hz, 1 H). 13C NMR (CDCl3): δ (major rotamer) = 27.6, 43.8, 111.8, 118.4, 126.7, 127.4, 128.6, 129.7, 131.9, 136.9, 173.4;
δ (minor rotamer) = 28.8, 45.7, 111.8, 117.7, 126.7, 127.4, 128.6, 129.7, 131.9, 137.6, 173.4. IR (film): 3065, 2955, 1645, 1420, 1045, 1025, 830 cm-1. HRMS: m/z calcd [MH+]: 252.00240; found: 252.00229.
Compound 7d (71%): yellow oil. 1H NMR (CDCl3): δ = 2.73 (dt, J = 6.0, 0.8 Hz, 2 H), 4.01 (t, J = 8.3 Hz, 2 H), 5.22 (dt, J = 5.3, 2.6 Hz, 1 H), 6.02 (s, 2 H), 6.06 (dt, J = 4.3, 2.1 Hz, 1 H), 6.80 (s, 1 H), 7.01 (s, 1 H). 13C NMR (CDCl3): δ = 28.9, 45.1, 102.4, 108.2, 108.5, 110.9, 113.0, 113.1, 130.0, 147.7, 149.4, 164.5. HRMS: m/z calcd [MH+]: 294.98441; found: 294.98497.
22a
Kinderman SS.
van Maarseveen JH.
Schoemaker HE.
Hiemstra H.
Rutjes FPJT.
Org. Lett.
2001,
3:
2045
22b
Katz JD.
Overman LE.
Tetrahedron
2004,
60:
9559
23a
Renaud P.
Sibi MP.
Radicals in Organic Synthesis
Vol. 1:
Wiley VCH;
Weinheim:
2001.
23b
Renaud P.
Sibi MP.
Radicals in Organic Synthesis
Vol. 2:
Wiley VCH;
Weinheim:
2001.
24a
Kamimura A.
Taguchi Y.
Omata Y.
Hagihara M.
J. Org. Chem.
2003,
68:
4996
24b
Zhang W.
Pugh G.
Tetrahedron
2003,
59:
3009
24c
Kato I.
Higashimoto M.
Tamura O.
Ishibashi H.
J. Org. Chem.
2003,
68:
7983
25a
Stork G.
Sher PM.
J. Am. Chem. Soc.
1986,
108:
303
25b
Majumdar KC.
Mukhopadhyay PP.
Synthesis
2003,
97
26a
Chatgilialoglu C.
Acc. Chem. Res.
1992,
25:
188
26b
Bennasar M.-L.
Zulaica E.
Juan C.
Alonso Y.
Bosch J.
J. Org. Chem.
2002,
67:
7465
27
Radical Cyclization of Amides 7, Typical Procedure Described from Amide 7a.
A solution of amide 7a (100 mg, 0.4 mmol) in toluene (40 mL) containing small amounts of AIBN (7 mg, 0.04 mmol) was bubbled by a dried stream of nitrogen for 10 min and heated to reflux. A solution of tristrimethylsilylsilane (140 µL, 0.44 mmol) in toluene (10 mL) was carefully added drop by drop in 15 min. The reaction was heated for additional 6 h. The solvent was removed by concentration and the crude mixture was purified by flash chromatography on silica (eluent: EtOAc-hexanes 50:50) and gave lactam 10a.
Compound 10a (77%): viscous oil. 1H NMR (CDCl3): δ = 1.25 (m, 2 H), 2.34 (m, 2 H), 3.43 (m, 1 H), 3.72 (dt, J = 11.3, 8.3 Hz, 1 H), 4.68 (dd, J = 10.3, 5.3 Hz, 1 H), 7.45 (m, 3 H), 7.80 (d, J = 7.2 Hz, 1 H). 13C NMR (CDCl3): δ = 28.2, 28.7, 40.9, 63.7, 114.9, 121.7, 122.9, 127.3, 130.6, 145.4, 170.6. IR: 3075, 2960, 1685, 1385, 1220, 1145, 740 cm-1. HRMS: m/z calcd [MH+]: 174.09189; found: 174.09163.
Compound 12c (62%): white solid; mp 103-109 °C. 1H NMR (CDCl3): δ = 1.40-1.85 (m, 4 H), 2.03 (dt, J = 11.3, 3.0 Hz, 1 H), 2.28 (dd, J = 3.0, 11.3 Hz, 1 H), 3.02 (dt, J = 3.2, 11.3 Hz, 1 H), 3.86 (dt, J = 10.2, 2.7 Hz, 1 H), 4.20 (dd, J = 3.2, 11.3 Hz, 1 H), 7.37 (dd, J = 1.1, 7.5 Hz, 1 H), 7.50 (t, J = 7.5 Hz, 1 H), 7.58 (dt, J = 1.1, 7.5 Hz, 1 H), 7.79 (d, J = 7.5 Hz, 1 H). 13C NMR (CDCl3): δ = 23.9, 24.3, 30.5, 40.4, 58.8, 121.4, 123.2, 129.3, 132.8, 135.4, 138.8. IR: 3080, 2955, 2850, 1645, 1450, 1285, 1170, 1130 cm-1. HRMS: m/z calcd [MH+]: 224.07452; found: 224.07453.
28a
Xu Z.
Johannes CW.
Houri AF.
La DS.
Cogan DA.
Hofilena GE.
Hoveyda AH.
J. Am. Chem. Soc.
1997,
119:
10302
28b
Fürstner A.
Thiel OR.
Ackermann L.
Org. Lett.
2001,
3:
449
28c
Fürstner A.
Ackermann L.
Gabor B.
Goddard R.
Lehmann CW.
Mynott R.
Stelzer F.
Thiel OR.
Chem.-Eur. J.
2001,
7:
3236
29a
Denmark SE.
Thoraransen A.
Chem. Rev.
1996,
96:
137
29b
Nicolaou KC.
Montagnon T.
Snyder SA.
Chem. Commun.
2003,
551
30
Tandem Process from Amides 2a,d, Typical Procedure.
To a solution of amide 2a (140 mg, 0.5 mmol) in toluene was added first generation Grubbs’ catalyst (11 mg, 2.5% mol). After stirring at r.t. for 1 h and complete disappearance of the starting material, NaH (7 mg, 1.5 mmol) was added at once and the mixture was heated to reflux. A new addition of both Grubbs’ catalyst (11 mg, 2.5% mol) and NaH (7 mg, 1.5 mmol) was performed after 12 h of heating and this sequence was repeated three times more. After cooling to r.t., AIBN (8 mg, 0.05 mmol) was added. The mixture was bubbled with a dried nitrogen stream and next heated. A solution of TTMSS (320 µL, 1 mmol) in toluene (10 mL) containing AIBN (8 mg, 0.05 mmol) was slowly added to the reaction mixture in 10 min. After heating at 130 °C for 6 h, the mixture was cooled to r.t., and the solvent removed by concentration under vacuum. The products were purified after flash chromatography on silica.