Int J Sports Med 2006; 27(4): 301-306
DOI: 10.1055/s-2005-865652
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Effect of Acute Hypoxia on Maximal Oxygen Uptake and Maximal Performance during Leg and Upper-Body Exercise in Nordic Combined Skiers

M. Angermann1 , H. Hoppeler1 , M. Wittwer1 , C. Däpp1 , H. Howald1 , M. Vogt1
  • 1Department of Anatomy, University of Bern, Bern, Switzerland
Further Information

Publication History

Accepted after revision: March 25, 2005

Publication Date:
30 August 2005 (online)

Abstract

We examined the effect of normobaric hypoxia (3200 m) on maximal oxygen uptake (V·O2max) and maximal power output (Pmax) during leg and upper-body exercise to identify functional and structural correlates of the variability in the decrement of V·O2max (ΔV·O2max) and of maximal power output (ΔPmax). Seven well trained male Nordic combined skiers performed incremental exercise tests to exhaustion on a cycle ergometer (leg exercise) and on a custom built doublepoling ergometer for cross-country skiing (upper-body exercise). Tests were carried out in normoxia (560 m) and normobaric hypoxia (3200 m); biopsies were taken from m. deltoideus. ΔV·O2max was not significantly different between leg (- 9.1 ± 4.9 %) and upper-body exercise (- 7.9 ± 5.8 %). By contrast, Pmax was significantly more reduced during leg exercise (- 17.3 ± 3.3 %) than during upper-body exercise (- 9.6 ± 6.4 %, p < 0.05). Correlation analysis did not reveal any significant relationship between leg and upper-body exercise neither for ΔV·O2max nor for ΔPmax. Furthermore, no relationship was observed between individual ΔV·O2max and ΔPmax. Analysis of structural data of m. deltoideus revealed a significant correlation between capillary density and ΔPmax (R = - 0.80, p = 0.03), as well as between volume density of mitochondria and ΔPmax (R = - 0.75, p = 0.05). In conclusion, it seems that V·O2max and Pmax are differently affected by hypoxia. The ability to tolerate hypoxia is a characteristic of the individual depending in part on the exercise mode. We present evidence that athletes with a high capillarity and a high muscular oxidative capacity are more sensitive to hypoxia.

References

  • 1 Angermann M, Hoppeler H, Däpp C, Wittwer M, Vogt M. Effekte eines intermittierenden Höhentrainings auf die langlaufspezifische Oberkörperleistungsfähigkeit bei Nordisch Kombinierten.  Leistungssport. 2004;  3 35-41
  • 2 Angermann M, Lehmann C, Hoppeler H, Däpp C, Vogt M. Oberkörperergometrie: Spezifische Leistungsdiagnostik für Langläufer und Nordisch Kombinierer.  Schweiz Z Sportmed Sporttraumatol. 2003;  51 168-173
  • 3 Billat V L, Lepretre P M, Heubert R P, Koralsztein J P, Gazeau F P. Influence of acute moderate hypoxia on time to exhaustion at vVO2max in unacclimatized runner.  Int J Sports Med. 2003;  24 9-14
  • 4 Brooke M H, Kaiser K. The “myosin adenosine triphosphatase” systems: the nature of their pH liability and sulfhydryl dependence.  J Histochem Cytochem. 1970;  18 670-672
  • 5 Chapman R F, Emery M, Stager J M. Degree of arterial desaturation in normoxia influences V·O2max decline in mild hypoxia.  Med Sci Sports Exerc. 1999;  31 658-663
  • 6 Di Prampero P E. Factors limiting maximal performance in humans.  Eur J Appl Physiol. 2003;  90 420-429
  • 7 Ferretti G, Moia C, Thomet J M, Kayser B. The decrease of maximal oxygen consumption during hypoxia in man: a mirror image of the oxygen equilibrium curve.  J Physiol. 1997;  498 231-237
  • 8 Gavin T P, Derchak P A, Stager J M. Ventilation's role in the decline in V·O2max and SaO2 in acute hypoxic exercise.  Med Sci Sports Exerc. 1998;  30 195-199
  • 9 Gore C J, Hahn A G, Scroop G C, Watson D B, Norton K I, Wood R J, Campell D P, Emonson D L. Increased arterial desaturation in trained cyclists during maximal exercise at 580 m altitude.  J Appl Physiol. 1996;  80 2204-2210
  • 10 Gore C J, Little S C, Hahn A G, Scroop G C, Norton K I, Bourdon P C, Woolford S M, Buckley J D, Stanef T, Cambell D P, Watson D B, Emonson D I. Reduced performance of male and female athletes at 580 m altitude.  Eur J Appl Physiol. 1997;  75 136-143
  • 11 Harms C A, Wetter T J, McClaran S R, Pegelow D F, Nickele G A, Nelson W B, Hanson P, Dempsey J A. Effects of respiratory muscle work on cardiac output and its distribution during maximal exercise.  J Appl Physiol. 1998;  85 609-618
  • 12 Hoppeler H, Vogt M. Muscle tissue adaptions to hypoxia.  J Exp Biol. 2001;  204 3133-3139
  • 13 Kayser B. Exercise starts and ends in the brain.  Eur J Appl Physiol. 2003;  90 411-419
  • 14 Koistinen P, Takal T, Martikkala V, Leppäluoto J. Aerobic fitness influences the response of maximal oxygen uptake and lactate threshold in acute hypobaric hypoxia.  Int J Sports Med. 1995;  26 78-81
  • 15 Lawler J, Powers S K, Thompson D. Linear relationship between V·O2max and V·O2max decrement during exposure to acute hypoxia.  J Appl Physiol. 1988;  64 1486-1492
  • 16 Levine B D, Stray-Gundersen J. “Living high-training low”: effect of moderate altitude acclimatization with low-altitude training on performance.  J Appl Physiol. 1997;  83 102-112
  • 17 Martin D, O'Kroy J. Effects of acute hypoxia on the V·O2max of trained and untrained subjects.  J Sports Sci. 1993;  11 37-42
  • 18 Noakes T D, Peltonen J E, Rusko H K. Evidence that a central governor regulates exercise performance during acute hypoxia and hyperoxia.  J Exp Biol. 2001;  204 3225-3234
  • 19 Oelz O, Howald H, Di Prampero P E, Hoppeler H, Claassen H, Jenni R, Buehlmann A, Ferretti G, Brueckner J C, Veicsteinas A, Gussoni M, Cerretelli P. Physiological profile of world-class high-altitude climbers.  J Appl Physiol. 1986;  60 (5) 1734-1742
  • 20 Peltonen J E, Rantamäki J, Niittymäki P T, Sweins K, Viitasalo J T, Rusko H K. Effects of oxygen fraction in inspired air on rowing performance.  Med Sci Sports Exerc. 1995;  27 573-579
  • 21 Peltonen J E, Tikannen H O, Rusko H K. Cardiorespiratory responses to exercise in acute hypoxia, hyperoxia, and normoxia.  Eur J Appl Physiol. 2001;  85 82-88
  • 22 Robergs R A, Quintana R, Parker D L, Frankel C C. Multiple variables explain the variability in the decrement in V·O2max during acute hypobaric hypoxia.  Med Sci Sports Exerc. 1998;  30 869-879
  • 23 Roberts A D, Daley P J, Martin D T, Hahn A, Gore C J, Spence R. Sea level V·O2max fails to predict V·O2max and performance at 1800 m altitude.  Med Sci Sports Exerc. 1998;  30 S111
  • 24 Shepard R J, Bouhlel E, Vandewalle H, Monod H. Muscle mass as a factor limiting physical exercise.  J Appl Physiol. 1988;  64 1472-1479
  • 25 Ventura N, Hoppeler H, Seiler R, Binggeli A, Mullis P, Vogt M. The response of trained athletes to six weeks of endurance training in hypoxia or normoxia.  Int J Sports Med. 2003;  24 166-172
  • 26 Vogt M, Puntschart A, Geiser J, Zuleger C, Billeter, Hoppeler H. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions.  J Appl Physiol. 2001;  91 173-182
  • 27 Wagner P D. A theoretical analysis of factors determining V·O2max at sea level and altitude.  Resp Physiol. 1996;  106 329-343
  • 28 Wagner P D. New ideas on limitations on V·O2max.  Exerc Sport Sci Rev. 2000;  28 10-14
  • 29 Weibel E R. Stereological Methods. Vol. 1. Practical Methods for Biological Morphometry. New York; Academic Press 1979
  • 30 West J B, Boyer S J, Graber D J, Hackett P H, Maret K H, Milledge J S, Peters Jr R M, Pizzo C J, Samaja M , Sarnquist F H. Maximal exercise at extreme altitudes on Mount Everest.  J Appl Physiol. 1983;  55 688-698

Dr. Michael Vogt

Department of Anatomy
University of Bern

Baltzerstr. 2

3012 Bern

Switzerland

Phone: + 41316318468

Email: vogt@ana.unibe.ch