Subscribe to RSS
DOI: 10.1055/s-2005-868482
Formal Synthesis of (+)-Anatoxin-a by Asymmetric [2+2] Cycloaddition
Publication History
Publication Date:
21 April 2005 (online)
Abstract
A formal asymmetric synthesis of (+)-anatoxin-a, a neurotoxic alkaloid from Anabaena flos aquae, has been achieved through a highly diastereoselective [2+2] cycloaddition of dichloroketene with a chiral enol ether.
Key words
N-acyliminium ion - asymmetric synthesis - cycloaddition - chiral enol ether - dichloroketene
- 1
Hyatt JA.Raynolds PW. Org. React. 1994, 45: 159 - 2
Greene AE.Charbonnier F. Tetrahedron Lett. 1985, 26: 5525 -
3a
Nebois P.Greene AE. J. Org. Chem. 1996, 61: 5210 -
3b
Kanazawa A.Gillet S.Delair P.Greene AE. J. Org. Chem. 1998, 63: 4660 -
3c
Delair P.Brot E.Kanazawa A.Greene AE. J. Org. Chem. 1999, 64: 1383 -
3d
Pourashraf M.Delair P.Rasmussen M.Greene AE. J. Org. Chem. 2000, 65: 6966 -
3e
Rasmussen M.Delair P.Greene AE. J. Org. Chem. 2001, 66: 5438 -
3f
Roche C.Delair P.Greene AE. Org. Lett. 2003, 5: 1741 -
4a
Devlin JP.Edwards OE.Gorham PR.Hunter NR.Pike RK.Stavric B. Can. J. Chem. 1977, 55: 1367 -
4b
Carmichael WW.Biggs DF.Gorham PR. Science 1975, 187: 542 -
5a
Mansell HL. Tetrahedron 1996, 52: 6025 -
5b
Oh C.-Y.Kim K.-S.Ham W.-H. Tetrahedron Lett. 1998, 39: 2133 -
5c
Trost BM.Oslob JD. J. Am. Chem. Soc. 1999, 121: 3057 -
5d
Aggarwal VK.Humphries PS.Fenwick A. Angew. Chem. Int. Ed. 1999, 38: 1985 -
5e
Parsons PJ.Camp NP.Edwards N.Sumoreeah LR. Tetrahedron 2000, 56: 309 -
5f
Wegee T.Schwarz S.Seitz G. Tetrahedron: Asymmetry 2000, 11: 1405 -
5g
Mori M.Tomita T.Kita Y.Kitamura T. Tetrahedron Lett. 2004, 45: 4397 -
5h
Brenneman JB.Martin SF. Org. Lett. 2004, 6: 1469 -
5i
Brenneman JB.Machauer R.Martin SF. Tetrahedron 2004, 60: 7301 - 6
Delair P.Kanazawa A.de Azevedo MB.Greene AE. Tetrahedron: Asymmetry 1996, 7: 2707 - 7
Kann N.Bernardes V.Greene AE. Org. Synth. 1997, 74: 13 - 8
Ho T.-L.Liu S.-H. Synth. Commun. 1987, 17: 969 - 9
Tamura Y.Minamikawa J.Ikeda M. Synthesis 1977, 1 - 10
Johnston BD.Slessor KN.Oehlschlager AC. J. Org. Chem. 1985, 50: 114 -
11a
Esch PM.Hiemstra H.Klaver WJ.Speckamp WN. Heterocycles 1987, 26: 75 -
11b For a recent review of N-acyliminium ion chemistry, see:
Maryanoff BE.Zhang H.-C.Cohen JH.Turchi IJ.Maryanoff CA. Chem. Rev. 2004, 104: 1431 -
12a
Brümmer O.Rücker A.Blechert S. Chem. Eur. J. 1997, 3: 441 -
12b
Connon SJ.Blechert S. Angew. Chem. Int. Ed. 2003, 42: 1900 -
12c
Vernall AJ.Adell AD. Aldrichimica Acta 2003, 36: 93 - 13
Scoll M.Ding S.Lee CW.Grubbs RH. Org. Lett. 1999, 1: 953 - 18
Tsuji J. Synthesis 1984, 369 - 20
Skrinjar M.Nilsson C.Wistrand L.-G. Tetrahedron: Asymmetry 1992, 3: 1263
References
To a solution of 6 (600 mg, 1.10 mmol) in 18.0 mL of CH2Cl2 at 0 °C was added dropwise 3.2 mL of formic acid. The reaction mixture was stirred at 0 °C for 1.75 h and then quenched with a sat. solution of aq NaHCO3 and extracted with CH2Cl2. The organic phase was washed successively with H2O and brine and dried over anhyd Na2SO4. The crude product was purified by SiO2 chromatography (10-20% diethyl ether in pentane) to afford 386 mg (77%) of 7, as a 2:1 mixture of isomers. Analytical data for the major isomer of 7a: colorless oil; [α]D 25 -84.3 (c 1.0, CHCl3). IR: 3070, 1704, 1608, 1449, 1400, 1098, 1081 cm-1. 1H NMR (300 MHz, CDCl3, two rotamers): δ = 1.17-1.29 (m, 18 H), 1.44-1.53 (m, 2 H), 1.52 (d, J = 6.8 Hz, 3 H), 1.68-1.81 (m, 4 H), 1.98-2.03 (m, 1 H), 2.32 (m, 1 H), 2.67-2.89 (m, 2 H), 3.12-3.17 (m, 1 H), 3.62 (s, 3 H), 3.86 (m, 2 H), 4.09-4.32 (m, 2 H), 4.86-5.09 (m, 3 H), 5.86-6.17 (m, 1 H), 6.93 (s, 1 H), 7.03 (s, 1 H). 13C NMR (75.4 MHz, CDCl3, two rotamers): δ = 23.2, 23.4, 24.0, 24.5, 24.9, 25.0, 25.3, 27.6, 28.2, 28.4, 29.2, 31.7, 32.0, 34.1, 40.0, 40.9, 52.1, 52.4, 52.7, 52.9, 58.3, 58.7, 58.8, 66.0, 71.5, 74.1, 74.8, 112.6, 112.7, 120.6, 123.4, 133,1, 143.8, 144.2, 145.8, 145.9, 147.5, 149.0, 155.3, 155.6. MS (CI): m/z (%) = 456 (100) [MH+]. Anal. Calcd for C29H45NO3: C, 76.44; H, 9.95; N, 3.07. Found: C, 76.46; H, 10.11; N, 2.81.
15Compound 7b (2:1 mixture of isomers): IR: 3432, 3073, 1683, 1463, 1403, 1347, 1122, 1087 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.40-2.00 (m, 7 H), 2.24-2.28 (m, 1 H), 2.47-2.78 (m, 2 H), 3.60-3.70 (4 s, 3 H), 4.00-4.50 (m, 3 H), 4.70-5.10 (m, 2 H), 5.60-6.15 (m, 1 H). MS (CI): m/z (%) = 226 (100) [MH+].
16Compound 7c (2:1 mixture of isomers): IR: 3073, 1698, 1637, 1449, 1397, 1117 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.22-1.50 (m, 2 H), 1.60-1.80 (m, 4 H), 2.05-2.18 (m, 1 H), 2.38-2.53 (m, 1 H), 2.72-2.88 (m, 1 H), 3.73 (s, 3 H), 4.14-4.54 (m, 2 H), 4.60-4.78 (m, 1 H), 4.88-5.10 (m, 2 H), 5.54-6.13 (m, 1 H). HRMS (CI): m/z calcd for C12H19NO2I [M + 1]: 336.0461; found: 336.0471.
17Compound 7d (2:1 mixture of isomers): IR: 3074, 1699, 1638, 1450, 1397, 1340, 1113 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.24-1.86 (m, 8 H), 1.94-2.06 (m, 1 H), 2.14-2.27 (m, 2 H), 3.66 (br s, 3 H), 4.10-4.50 (m, 2 H), 4.85-5.10 (m, 2 H), 5.70-6.20 (m, 1 H).
19A single isomer was obtained. The ee of 8 was estimated to be 93% based on the rotation {[α]D 25 -13.7 (c 1.0, CH3OH)] and ee (94%) of the comparison material. This purity is consistent with the observed diastereoselection (95:5) in the cycloaddition and a subsequent small enrichment.