Subscribe to RSS
DOI: 10.1055/s-2005-869846
A Divergent Synthesis of Uncommon Sugars from Furanaldehyde
Publication History
Publication Date:
12 May 2005 (online)

Abstract
A practical synthetic strategy has been developed for producing uncommon sugars. This method employed kinetic enzymatic resolution of 1-(2-furyl)ethanol, and followed by NBS-mediated Achmatowicz rearrangement to construct α,β-unsaturated lactones. After further derivatization, five representative uncommon sugar units were successfully synthesized.
Key words
uncommon sugar - enzymatic kinetic resolution - 1-(2-furyl)ethanol - Achmatowicz rearrangement
-
1a
Weymouth-Wilson AC. Nat. Prod. Rep. 1997, 14: 99 -
1b
Montreuil J.Vleigenthart JFG. Glycoproteins Elsevier; Amsterdam: 1995. -
1c
Wiegandt HE. Glycolipids Elsevier; Amsterdam: 1985. -
1d
Varki A. Glycobiology 1993, 3: 97 -
1e
Nagarajan R. Glycopeptide Antibiotics Dekker; New York: 1994. -
1f
Allen HJ. Glycoconjugates: Composition, Structure, and Function Dekker; New York: 1992. -
2a
Kirschning A.Jesberger M.Schoning K.-U. Synthesis 2001, 507 -
2b
Marzabadi CH.Franck RW. Tetrahedron 2000, 56: 8385 -
2c
Toshima K.Tatsuta K. Chem. Rev. 1993, 93: 1503 -
2d
Sztaricskai F.Pelyvas-Ferenczik I. Glycopeptide Antibiotics Dekker; New York: 1994. -
2e
Hauser FM.Ellenberger SR. Chem. Rev. 1986, 86: 35 -
2f
Hudlicky T.Entwistle DA.Pitzer KK.Thorpe AJ. Chem. Rev. 1996, 96: 1195 - 3
Pelyvas-Ferenczik I.Monneret C.Herczegh P. Synthetic Aspects of Aminodeoxy Sugars of Antibiotics Springer-Verlag; Berlin: 1988. -
4a For a comprehensive review based on stereoselective syntheses of carbohydrates, see:
McGarvey GJ.Kimura M.Oh T.Williams JM. J. Carbohydr. Chem. 1984, 3: 125 ; and references cited therein -
4b
Behrens CH.Sharpless KB. Aldrichimica Acta 1983, 16: 67 ; and references cited therein -
5a
Babu RS.Zhou M.O’Doherty GA. J. Am. Chem. Soc. 2004, 126: 3428 -
5b
Haukaas MH.O’Doherty GA. Org. Lett. 2002, 4: 1771 -
6a
Northrup AB.Mangion IK.Hettche F.MacMillan DWC. Angew. Chem. Int. Ed. 2004, 43: 2152 -
6b
Northrup AB.MacMillan DWC. Science 2004, 305: 1752 -
7a
Andreana PR.McLellan JS.Chen Y.Wang PG. Org. Lett. 2002, 4: 3875 -
7b
Zhu L.Kedenburg JP.Xian M.Wang PG. Tetrahedron Lett. 2005, 46: 811 -
8a
Ghanem A. Org. Biomol. Chem. 2003, 1: 1282 -
8b
Ghanem A.Schurig V. Tetrahedron: Asymmetry 2003, 14: 2547 -
8c
Mandal SK.Sigman MS. J. Org. Chem. 2003, 68: 7535 -
8d
Akai S.Naka T.Omura S.Tanimoto K.Imanishi M.Takebe Y.Matsugi M.Kita Y. Chem.-Eur. J. 2002, 8: 4255 - 9
Harris JM.Keranen MD.O’Doherty GA. J. Org. Chem. 1999, 64: 2982 -
10a
Kametani T.Tsubuki M.Tatsuzaki Y.Honda T. Heterocycles 1988, 27: 2107 -
10b
Kametani T.Tsubuki M.Tatsuzaki Y.Honda T. J. Chem. Soc., Perkin Trans. 1 1990, 639 -
10c
Honda T.Kametani T.Kanai K.Tatsuzaki Y.Tsubuki M. J. Chem. Soc., Perkin Trans. 1 1990, 1733 -
11a
Kobayashi Y.Kusakabe M.Kitano Y.Sato F. J. Org. Chem. 1988, 53: 1587 -
11b
Kusakabe M.Kitano Y.Kobayashi Y.Sato F. J. Org. Chem. 1989, 54: 2085 -
12a
Yang Z.-C.Zhou W.-S. Tetrahedron Lett. 1995, 36: 5617 -
12b
Yang Z.-C.Jiang X.-B.Wang Z.-M.Zhou W.-S. J. Chem. Soc., Chem. Commun. 1995, 2389 - 13
Harris JM.Keranen MD.Nguyen H.Young VG.O’Doherty GA. Carbohydr. Res. 2000, 328: 17 -
14a
Zhang G.Wang J.Cheng M.Cai K. Chin. Chem. Lett. 1994, 5: 105 -
14b
The CrO3·NH4Cl complex was synthesized according to the paper: CrO3 (20 g) was dissolved in a minimum amount of H2O (ca. 10-12 mL). Then NH4Cl (8.6 g, 1 equiv) was added in portions as solid. The mixture was allowed to stir at r.t. for 10 min and then warm up to 40 °C to ensure a homogenous solution was obtained. After being cooled down to r.t., the crystals were collected by filtration. Finally, the product was dried under vacuum to give red-orange flake crystals (21 g). The oxidation was performed in CH2Cl2 at r.t. in the presence of CrO3·NH4Cl complex (3-4 equiv).
- 16
Luche JL. J. Am. Chem. Soc. 1978, 100: 2226 - 17
Dermatakis A.Luk K.-C.DePinto W. Bioorg. Med. Chem. 2003, 11: 1873 -
18a
Takano S.Shimazaki Y.Sekiguchi Y.Ogasawara K. Synthesis 1989, 539 -
18b
Miyashita M.Suzuki T.Yoshikoshi A. Tetrahedron Lett. 1987, 28: 4293
References
Compound 4 is not very stable, after reaction it should be used directly. Storage at 4 °C for 3 d led to decomposition to a black oil.
19
Procedure for Kinetic Enzymatic Resolution of (
R
)-1-(2-Furyl)ethanol.
To a stirred mixture of 1-(2-furyl)ethanol (60 g, 0.54 mol) and isopropenyl acetate (200 mL, 1.82 mol) in diisopropyl ether (200 mL) was added Novozyme 435 (3.0 g). The reaction mixture was warmed to 40 °C and monitored by GC analysis. The reaction was stopped by filtration when 45% conversion rate was reached (ca. 2.5 h). The filtrate was concentrated on rotary evaporator. The residue was subjected for fractional distillation and collected the fraction at 82-85 °C/25 mmHg. The yellow oil obtained was consequently mixed with PBS buffer (pH = 7.0, 1.2 L) and Novozyme 435 (2.0 g) and stirred at r.t. for 2 h. TLC indicated the completion of the hydrolysis. The enzyme was removed by filtration and the aqueous solution was extracted with EtOAc (6 × 150 mL). The combined organic phases were dried over MgSO4 and concentrated under vacuum. The crude product was purified by column chromatography (hexanes-EtOAc, 10:1) to give (R)-1 (21.5 g, >97% ee by chiral GC analysis).
Spectroscopic data.
Compound 9 was obtained as its α-anomer from the coupling constant of the anomeric proton signal. The parent ion was not observed by HRMS, due to decomposition of this compound under the analysis conditions. IR (neat): 2950, 2100 (N3 group), 1275, 1050 cm-1. 1H NMR (250 MHz, CDCl3): δ = 4.96 (d, J = 3.0 Hz, 1 H), 4.09 (qd, J = 6.5, 1.8 Hz, 1 H), 3.91 (sept, J = 6.1 Hz, 1 H), 3.48 (m, 1 H), 2.14 (m, 1 H), 1.95 (m, 2 H), 1.56 (m, 1 H), 1.22 (d, J = 6.5 Hz, 6 H), 1.16 (d, J = 6.1 Hz, 3 H). 13C NMR (63 MHz, CDCl3): δ = 94.2, 67.9, 64.8, 59.8, 24.3, 23.0, 22.7, 21.2, 17.6.
Compound 10: 1H NMR (400 MHz, CD3OD): δ = 4.37-4.32 (m, 1 H), 3.86 (d, J = 9.0 Hz, 1 H), 3.67 (d, J = 4.2 Hz, 1 H), 3.62 (d, J = 4.2 Hz, 1 H), 1.34 (d, J = 6.3 Hz, 3 H). 13C NMR (100 MHz, CD3OD): δ = 167.6, 73.4, 71.1, 55.9, 50.5, 17.1. HRMS (ESI): m/z calcd for C6H8O4Na: 167.0320 [M + Na+]. Found: 167.0324.
Compound 13: 1H NMR (400 MHz, CD3OD): δ = 4.48-4.42 (m, 1 H), 3.92 (d, J = 9.2 Hz, 1 H), 3.63 (d, J = 4.4 Hz, 1 H), 3.54 (d, J = 4.4 Hz, 1 H), 1.33 (d, J = 6.4 Hz, 3 H), 0.93 (s, 9 H), 0.18 (s, 3 H), 0.15 (s, 3 H).
13C NMR (100 MHz, CD3OD): δ = 166.7, 73.3, 71.0, 55.9, 50.7, 25.8, 18.3, -3.9, -4.5. HRMS (ESI): m/z calcd for C12H22O4SiNa: 281.1185 [M + Na+]. Found: 281.1190.
Compound 17 was obtained as a mixture of α/β-anomers, selected data for β-anomer: 1H NMR (400 MHz, CD3OD): δ = 5.03 (dd, J = 9.0, 2.3 Hz, 1 H), 4.10 (q, J = 3.5 Hz, 1 H), 3.64 (dq, J = 9.2, 6.3 Hz, 1 H), 3.41 (m, 1 H), 2.14 (q, J = 14.0 Hz, 1 H), 1.83 (m, 1 H), 1.32 (d, J = 6.7 Hz, 3 H). 13C NMR (100 MHz, CD3OD): δ = 90.8, 69.7, 67.0, 63.1, 32.1, 15.3. [α]D
25 38 (c 1.0, MeOH-d
4). HRMS (EI): m/z calcd for C6H11N3O3: 173.0796. Found: 173.0802.