Subscribe to RSS
DOI: 10.1055/s-2005-869866
Stereoselective Synthesis of the Conformationally Constrained Glutamate Analogue, (-)-(2R,3S)-cis-2-Carboxyazetidine-3-acetic Acid, from (S)-N-Tosyl-2-phenylglycine
Publication History
Publication Date:
07 June 2005 (online)

Abstract
The stereoselective synthesis of a novel cis conformationally constrained glutamate analogue containing an azetidine framework was accomplished from (S)-N-tosyl-2-phenylglycine in moderate overall yield. The key steps in the synthesis involved a N-H carbenoid insertion promoted by Cu(acac)2, a very efficient Wittig olefination of an azetidin-3-one, followed by a highly stereoselective rhodium-catalyzed hydrogenation. Epimerization of the cis to the trans analogue was performed using DBU as base in toluene at reflux.
Key words
azetidin-3-ones - glutamate analogues - N-H insertion - conformationally constrained amino acids - Wittig reaction
-
1a
Kanai Y.Smith CP.Hediger MA. Trends Neurosci. 1993, 16: 365 -
1b
Szatkowski M.Attwell D. Trends Neurosci. 1994, 17: 359 -
2a
Conn PJ.Patel J. In The Metabotropic Glutamate Receptors Humana Press; Totowa / New Jersey: 1994. p.1-277 -
2b
Hollmann M.Heinemann S. Annu. Rev. Neurosci. 1994, 17: 31 -
2c
Nakanishi S. Neuron 1994, 13: 1031 -
2d
Nicolletti F.Bruno V.Copani A.Casabona G.Knöpfel T. Trends Neurosci. 1996, 19: 267 -
3a
Daw NW.Stein PS.Fox KA. Rev. Neurosci. 1993, 16: 207 -
3b
Collingridge GL.Bliss TVP. Trends Neurosci. 1995, 18: 54 -
3c
Cotman CW.Kahle JS.Miller SE.Ulas J.Bridges RJ. Excitatory Amino Acid Neurotransmission, In Psychopharmacology: The Fourth Generation of ProgressBloom FE.Kupfer DJ. Raven Press; New York: 1995. p.75-85 -
4a
Choi DW. Ann. Rev. Neurosci. 1990, 13: 171 -
4b
Meldrum BS. Brain Pathol. 1993, 3: 405 -
4c
Choi DW. Prog. Brain Res. 1994, 100: 47 -
4d
Rothman SM.Olney JW. Trends Neurosci. 1995, 18: 57 - 5
Chamberlin AR.Bridges RJ. Conformationally Constrained Amino Acids as Probes of Glutamate Receptors and Transporters, In Drug Design for NeuroscienceKozikowski AP. Raven Press; New York: 1993. p.231-259 - For the synthesis and studies of azetidinic α-amino acids, see:
-
6a
Kozikowski AP.Tückmantel W.Reynolds IJ.Wroblewski TJ. J. Med. Chem. 1990, 33: 1561 -
6b
Kozikowski AP.Tückmantel W.Liao Y.Wroblewski TJ.Wang S.Pshenichkin S.Surin A.Thomsen C. Bioorg. Med. Chem. Lett. 1996, 6: 2559 -
6c
Kozikowski AP.Tückmantel W.Liao Y.Wroblewski TJ.Manev H.Ikonomovic S. J. Med. Chem. 1993, 36: 2706 -
6d
Bridges RJ.Lovering FE.Humphrey JM.Stanley MS.Blakely TN.Cristofaro MF.Chamberlin R. Bioorg. Med. Chem. Lett. 1993, 3: 115 -
6e
Arakawa Y.Murakami T.Arakawa Y.Yoshifugi S. Chem. Pharm. Bull. 2003, 51: 96 -
6f
De Kimpe N.Boeykens M. Tetrahedron 1998, 54: 2619 -
6g
Hanessian S.Bernstein N.Yang R.Maguire R. Bioorg. Med. Chem. Lett. 1999, 9: 1437 -
6h
Couty F.Evano G.Rabasso N. Tetrahedron: Asymmetry 2003, 14: 2407 -
6i
Couty F.Carlin-Sinclair A.Rabasso N. Synlett 2003, 726 - 7 For a review on azetidin-3-ones, see:
Dejaegher Y.Kuz’nenok NM.Zvonok AM.De Kimpe N. Chem. Rev. 2002, 102: 29 - 8 Compound 4 was also prepared by Pussino:
Pusino A.Saba A.Desole G. Gazz. Chim. Ital. 1985, 115: 33 - 9
Burtoloso ACB.Correia CRD. Tetrahedron Lett. 2004, 45: 3355 - 10 For the synthesis of N-tosyl-azetidin-3-ones employing Cu(acac)2, see:
Wang J.Hou Y.Wu P. J. Chem. Soc., Perkin Trans. 1 1999, 2277 - For previous applications of the Wittig olefination of azetidin-3-ones, see:
-
11a
Hanessian S.Fu J.Chiara JL.Di Fabio R. Tetrahedron Lett. 1993, 34: 4157 -
11b
Podlech J.Seebach D. Helv. Chim. Acta 1995, 78: 1238 -
11c
Emmer G. Tetrahedron 1992, 48: 7165 - 13
Liu H.Ramani B. Synth. Commun. 1985, 15: 965 - 15
Matsuura F.Hamada Y.Shioiri T. Tetrahedron Lett. 1992, 33: 7921 - 17
Clayden J.Menet CJ.Tchabanenko K. Tetrahedron 2002, 58: 4727 - 20
Alcaide B.Aly MF.Rodríguez-Vicente A. Tetrahedron Lett. 1998, 39: 5865
References
Inseparable mixture of compounds by column chromatography.
14The cis compound 6 could not be separated from its trans isomer by column chromatography.
16Compound 7 was obtained as an inseparable mixture of the cis and trans stereoisomers. The ratio of these compounds was determined by 1H NMR and GC.
18Mp 201-202 °C (dec). IR: 3300-2500, 1698, 1437, 1346, 1229, 1161, 943 cm-1. 1H NMR (300 MHz, acetone-d 6): δ = 7.79 (d, J = 8.8 Hz, 2 H), 7.49 (d, J = 8.8 Hz, 2 H), 4.62 (d, J = 9.5 Hz, 1 H), 3.90 (t, J = 8.1 Hz, 1 H), 3.50 (dd, J = 8.1, 4.4 Hz, 1 H), 2.97 (m, 1 H), 2.67 (d, J = 8.1 Hz, 2 H), 2.46 (s, 3 H). 13C NMR (75 MHz, acetone-d 6): δ = 172.5, 169.6, 145.1, 134.1, 130.8, 129.0, 63.8, 54.2, 34.5, 28.4, 21.6.
19IR: 3077, 1679, 1625, 1574, 1421, 1184, 1129, 974, 801, 723 cm-1. 1H NMR (300 MHz, D2O): δ = 4.90 (d, J = 9.5 Hz, 1 H), 4.30 (dd, J = 10.9, 8.8 Hz, 1 H), 3.77 (dd, J = 10.9, 6.6 Hz, 1 H), 3.40 (m, 1 H), 2.60 (dd, J = 16.1, 5.1 Hz, 1 H), 2.44 (dd, J = 16.1, 11.7 Hz, 1 H). 13C NMR (75 MHz, D2O): δ = 176.0, 170.6, 61.8, 48.5, 34.5, 30.5. ESI-MS: m/z = 160 [M + 1], 114, 97, 96, 84, 78, 68. HRMS: m/z calcd for C6H9NO4: 159.05316; found: 159.06178.
21In some occasions, a small amount of epimerization at C2 was observed.