Subscribe to RSS
DOI: 10.1055/s-2005-871559
Asymmetric Alkylation of a tert-Butyl Benzophenone Schiff Base Derivative in Water
Publication History
Publication Date:
22 June 2005 (online)
Abstract
The asymmetric alkylation of a tert-butyl benzophenone Schiff base derivative in water has been successfully carried out in a ‘reversed-phase reaction’. The effects of chiral phase-transfer catalysts (PTCs), electrophiles, and reaction conditions (temperature, concentration, and the ratio of reagents, etc.) were investigated. Under the optimized conditions high chemical yield (99%) and good ee (up to 87%) were obtained.
Key words
alkylations - phase-transfer - asymmetric catalysis - cinchona alkoloids - amino acids
-
1a
Lygo B.Wainwright PG. Tetrahedron Lett. 1998, 39: 1599 -
1b
Lygo B.Wainwright PG. Tetrahedron 1999, 55: 6289 -
1c
Lygo B.To DCM. Tetrahedron Lett. 2001, 42: 1343 -
1d
Corey EJ.Zhang F.-Y. Org. Lett. 1999, 1: 1287 -
1e
Ooi T.Ohara D.Tamura M.Maruoka K. J. Am. Chem. Soc. 2004, 126: 6844 -
2a
Ma D.Cheng K. Tetrahedron: Asymmetry 1999, 10: 713 -
2b
Ishikawa T.Araki Y.Kumamoto T.Seki H.Fukuda K.Isobe T. Chem. Commun. 2001, 245 -
2c
Arai S.Truji R.Nashida A. Tetrahedron Lett. 2002, 43: 9535 - 3
Arai S.Nakayama K.Ishida T.Shioiri T. Tetrahedron Lett. 1999, 40: 4215 -
4a
Arai S.Shioiri T. Tetrahedron Lett. 1998, 39: 2145 -
4b
Arai S.Shirai Y.Ishida T.Shioiri T. Tetrahedron 1999, 55: 6375 -
4c
Arai S.Shirai Y.Ishida T.Shioiri T. Chem. Commun. 1999, 49 -
4d
Arai S.Ishida T.Shioiri T. Tetrahedron Lett. 1998, 39: 8299 -
4e
Arai S.Shioiri T. Tetrahedron 2002, 58: 1407 -
4f
Arai S.Tokumaru K.Aoyama T. Tetrahedron Lett. 2004, 45: 1845 -
5a
O’Donnell MJ.Bennett WD.Wu S. J. Am. Chem. Soc. 1989, 111: 2353 -
5b
Lygo B.Wainwright PG. Tetrahedron Lett. 1997, 38: 8595 -
5c
Corey EJ.Xu F.Noe MC. J. Am. Chem. Soc. 1997, 119: 12414 -
5d
Park HG.Jeong BS.Yoo MS.Lee JH.Park MK.Lee YJ.Kim MJ.Jew SS. Angew. Chem. Int. Ed. 2002, 41: 3036 -
5e
Jew SS.Yoo MS.Jeong BS.Park IY.Park HG. Org. Lett. 2002, 4: 4245 -
6a
Corey EJ.Noe MC.Xu F. Tetrahedron Lett. 1998, 39: 5347 -
6b
Lygo B. Tetrahedron Lett. 1999, 40: 1389 -
6c
Lygo B.Andrews BI.Slack D. Tetrahedron Lett. 2003, 44: 9039 -
6d
Ooi T.Tayama E.Maruoka K. Angew. Chem. Int. Ed. 2003, 42: 579 -
7a
Ooi T.Kameda M.Makuoka K. J. Am. Chem. Soc. 1999, 121: 6519 -
7b
Ooi T.Uematsu Y.Kameda M.Maruoka K. Angew. Chem. Int. Ed. 2002, 41: 1551 -
7c
Ooi T.Kameda M.Maruoka K. J. Am. Chem. Soc. 2003, 125: 5139 -
8a
Manabe K. Tetrahedron Lett. 1998, 39: 5807 -
8b
Manabe K. Tetrahedron 1998, 54: 14456 -
9a
Belokon YN.Kotchetkov KA.Churkina TD.Ikonnikov NS.Chesnokov AA.Larionov AV.Parmar VS.Kumar R.Kagan HB. Tetrahedron: Asymmetry 1998, 9: 851 -
9b
Belokon YN.Kotchetkov KA.Churkina TD.Ikonnikov NS.Chesnokov AA.Larionov AV.Singh I.Parmar VS.Vyskocil S.Kagan HB. J. Org. Chem. 2000, 65: 7041 -
10a
Shibuguchi T.Fukuta Y.Akachi Y.Sekine A.Oshima T.Shibasaki M. Tetrahedron Lett. 2002, 43: 9539 -
10b
Arai S.Tsuji R.Nishida A. Tetrahedron Lett. 2002, 43: 9535 - 11
Kita T.Georgieva A.Hashimoto Y.Nakata T.Nagasawa K. Angew. Chem. Int. Ed. 2002, 41: 2832 -
12a
Belokon YN.North M.Kublitski VS.Ikonnikov NS.Krasik PE.Maleev VL. Tetrahedron Lett. 1999, 40: 6105 -
12b
Belokon YN.Davies RG.North M. Tetrahedron Lett. 2000, 41: 7245 -
13a
Zhang Z.-P.Wang Y.-M.Wang Z.Hodge P. React. Funct. Polym. 1999, 41: 37 -
13b
Chichilla R.Mazon P.Najera C. Tetrahedron: Asymmetry 2000, 11: 3277 -
13c
Thierry B.Plaquevent J.-C.Cahard D. Tetrahedron: Asymmetry 2003, 14: 1671 -
13d
Danelli T.Annunziata R.Benaglia M.Cinquini M. Tetrahedron: Asymmetry 2003, 14: 461 -
14a
Ooi T.Tayama E.Doda K.Takeuchi M.Maruoka K. Synlett 2000, 1500 -
14b
Okino T.Takemoto T. Org. Lett. 2001, 3: 1515 -
14c
Yu H.Koshima H. Tetrahedron Lett. 2003, 44: 9209 -
14d
Yu H.Koshima H. Tetrahedron 2004, 60: 8405 - 15
Fringuelli F.Matteucci M.Piermatti O.Pizzo F.Burla MC. J. Org. Chem. 2001, 66: 4661 - 19
O’Donnell MJ.Wu S.Huffman JC. Tetrahedron 1994, 50: 4507 - 20 After all experiments were performed, we noticed that a recent paper reported a similar result:
Mase N.Ohno T.Morimoto H.Nitta F.Yoda H.Takabe K. Tetrahedron Lett. 2005, 46: 3213
References
Typical procedure for asymmetric alkylation: A mixture of 1 (0.678 mmol, 200 mg), benzyl bromide (5.0 equiv, 0.4 mL) and the catalyst (0.01 equiv, 4 mg) was cooled to 5 °C and a 1 M KOH aqueous solution (13 equiv, 9.0 mL) was added. The mixture was vigorously stirred. When the reaction was finished, the mixture was extracted with ethyl acetate (4 × 20 mL). The organic extracts were combined and dried (Na2SO4) then evaporated in vacuo.
17Synthesis of catalyst 3: Cinchonidine (11.0 mmol, 3.234 g) and 4,4′-chloromethyl biphenyl (5.0 mmol, 1.255 g) were added to the solution of EtOH-DMF-CHCl3 (2.5: 3:1, 26 mL), followed by stirring at 100 °C for 8 h. After cooling the reaction mixture to room temperature, the resulting suspension precipitated by the addition of Et2O. The solids were filtered, washed with Et2O. The crude solid was recrystallized from MeOH to afford the desired product 3.566 g (85% yields) as an orange solid. The structure of sample was confirmed by a range of analytical methods.
18Synthesis of catalyst 4: A styrene-divinylbenzene copolymer (4.5 g, 7%) was swollen in DMF (100 mL) for 2 h, 9-O-(4-nitrobenzoyl)cinchonine (11.6 g) was added. The flask was heated at 80 °C for 60 h. During the course of the reaction the color of the copolymer beads turned dark red. After cooling, the polymer beads were separated by filtration, washed with EtOH (3 × 20 mL), DCE (3 × 20 mL), Et2O (3 × 20 mL), and dried in vacuo. The structure of the sample was certified by several analytical methods.