Subscribe to RSS
DOI: 10.1055/s-2005-871970
A Fluorescent Quinoline Derivative as Selective Receptor for Fluoride Anions
Publication History
Publication Date:
20 July 2005 (online)
Abstract
The fluorescent anion receptor 7 based on a quinoline backbone and on amide and urea side chains is prepared and fluorescence titrations in chloroform reveal a high affinity for fluoride (Ka = 14400 M-1) over chloride (Ka = 3100 M-1) and bromide (Ka = 640 M-1).
Key words
halides - receptor - quinoline - molecular recognition
- 1
Werner A. Z. Anorg. Chem. 1893, 3: 267 -
2a
Bianchi A.Bowman-James K.Garcia-Espana E. Supramolecular Chemistry of Anions Wiley-VCH; Weinheim: 1997. -
2b
Beer P.Gale PA. Angew. Chem. Int. Ed. 2001, 40: 486 ; Angew. Chem. 2001, 113, 502 - 3
Albrecht M.Witt K.Wegelius E.Rissanen K. Tetrahedron 2000, 56: 591 -
4a
Kavallieratos K.de Gala SR.Austin DJ.Crabtree RH. J. Am. Chem. Soc. 1997, 119: 2325 -
4b
Kavallieratos K.Bertao CM.Crabtree RH. J. Org. Chem. 1999, 64: 1675 - 5
Schalley CA.Reckien W.Peyerimhoff S.Baytekin B.Vögtle F. Chem.-Eur. J. 2004, 10: 4777 -
6a
Connors KA. Binding Constants Wiley; New York: 1987. -
6b
Wilcox CS. In Frontiers in Supramolecular Chemistry and PhotochemistrySchneider H.-J.Dürr H. Wiley-VCH; Weinheim: 1991. p.123 - 7
Jiang H.Leger J.-M.Dolain C.Guionneau P.Huc I. Tetrahedron 2003, 59: 8365 - 8
Albrecht M.Zauner J.Burgert R.Röttele H.Fröhlich R. Mater. Sci. Eng., C 2001, 18: 185 - 10
Boiocchi M.Del Boca L.Gomez DE.Fabbrizzi L.Licchelli M.Monzani E. J. Am. Chem. Soc. 2004, 126: 16507 - 11
Kang SO.Vander Velde D.Powell D.Bowman-James K. J. Am. Chem. Soc. 2004, 126: 12272 - 12
Wolfbeis OS. Fluorescence Spectroscopy - New Methods and Applications Springer; Berlin: 1993. - See for comparison:
-
13a
Mizuno T.Wei W.-H.Eller LR.Sessler JL. J. Am. Chem. Soc. 2002, 124: 1134 -
13b
Camiolo S.Gale PA. Chem. Commun. 2000, 1129 -
13c
Gale PA.Sessler JL.Kral V. Chem. Commun. 1998, 1 -
13d See also:
Schmidtchen FP. Org. Lett. 2002, 4: 431
References
Characterization of compound 7: yield 85%. 1H NMR (400 MHz, CDCl3): δ = 9.69 (s, NH), 9.23 (s, NH), 8.73 (d, J = 7.7 Hz, 1 H), 7.75 (d, J = 8.5 Hz, 1 H), 7.67 (s, 1 H), 7.49 (t, J = 8.2 Hz, 1 H), 6.37 (s, NH), 3.98 (d, J = 6.6 Hz, 2 H), 3.19 (m, 1 H), 3.03 (m, 1 H), 2.32 (q, J = 6.7 Hz, 2 H), 2.25 (m, 1 H), 1.64 (s, 4 H), 1.39 (m, 4 H), 1.25 (m, 12 H), 1.15 (d, J = 6.6 Hz, 6 H), 1.10 (d, J = 6.9 Hz, 6 H). 13C NMR (100 MHz, CDCl3): δ = 165.0, 163.5, 163.2 (2 × C), 137.4, 136.3, 127.9, 123.5, 121.9, 100.2, 98.4, 76.1, 40.2 (2 × C), 31.6, 31.4, 30.4, 30.2, 29.2, 29.1, 28.2, 26.9, 26.7, 22.5, 22.4, 19.0, 14.0, 13.8. IR (KBr): ν = 3348 (vs), 2928 (vs), 2858 (s), 1646 (s), 1528 (vs), 1460 (m), 1416 (m), 1384 (w), 1360 (m), 1321 (m), 1274 (m), 1224 (m), 1144 (w), 1045 (m), 865 (w), 817 (w), 762 (m), 725 (w), 544 (w) cm-1. MS (EI, 70 eV): m/z (%) = 498 (7) [M+, C29H46N4O3 +], 343 (100) [C20H29N3O2 +]. Anal. Calcd for C29H46N4O3·1/2 H2O: C, 68.60; H, 9.33; N, 11.04. Found: C, 68.83; H, 9.03; N, 10.90.