Subscribe to RSS
DOI: 10.1055/s-2005-917083
Control of Diastereoselectivity in C=O/C=N Reductive Cyclizations Using an Intramolecularly Tethered Hydrazone
Publication History
Publication Date:
05 October 2005 (online)

Abstract
Cyclic hydrazones are efficient ketyl radical acceptors in reductive coupling cyclizations mediated by samarium diiodide, affording cyclic amino alcohols with controlled stereochemistry at the new aminated stereocenter. This approach has been successfully applied to the stereoselective synthesis of a fully functionalized trehazolin cyclitol starting from d-glucose, where the required cyclic hydrazone was directly obtained by partial hydrazynolysis of a 1,2-cyclic carbonate.
Key words
carbohydrates - electron transfer - hydrazones - ketones - samarium
- 1
Bergmeier SC. Tetrahedron 2000, 56: 2561 - 2
Corey EJ.Pyne SG. Tetrahedron Lett. 1983, 24: 2821 - For recent reviews, see:
-
3a
Fallis AG.Brinza IM. Tetrahedron 1997, 53: 17543 -
3b
Naito T. Heterocycles 1999, 50: 505 -
3c
Friestad GK. Tetrahedron 2001, 57: 5461 - For selected applications in natural products synthesis, see:
-
4a
Miyabe H.Torieda M.Kiguchi T.Naito T. Synlett 1997, 580 -
4b
Miyabe H.Torieda M.Inoue K.Tajiri K.Kiguchi T.Naito T. J. Org. Chem. 1998, 63: 4397 -
4c
Boiron A.Zillig P.Faber D.Giese B. J. Org. Chem. 1998, 63: 5877 -
4d
Storch de Garcia I.Bobo S.Martin-Ortega MD.Chiara JL. Org. Lett. 1999, 1: 1705 -
4e
Miyabe H.Torieda M.Inoue K.Tajiri K.Kiguchi T.Naito T. J. Org. Chem. 1998, 63: 4397 -
4f
Riber D.Hazell R.Skrydstrup T. J. Org. Chem. 2000, 65: 5382 -
4g
Nicolaou KC.Snyder SA.Giuseppone N.Huang XH.Bella M.Reddy MV.Rao PB.Koumbis AE.Giannakakou P.O’Brate A. J. Am. Chem. Soc. 2004, 126: 10174 -
5a
Tsukinoki T.Nagashima S.Mitoma Y.Tashiro M. Green Chem. 2000, 2: 117 -
5b
Shimizu M.Iwata A.Makino H. Synlett 2002, 1538 -
6a
Shono T.Kise N.Fujimoto T. Tetrahedron Lett. 1991, 32: 525 -
6b
Shono T.Kise N.Kunimi N.Nomura R. Chem. Lett. 1991, 2191 -
6c
Shono T.Kise N.Fujimoto T.Yamanami A.Nomura R. J. Org. Chem. 1994, 59: 1730 -
7a
Hanamoto T.Inanaga J. Tetrahedron Lett. 1991, 32: 3555 -
7b
Sturino CF.Fallis AG. J. Am. Chem. Soc. 1994, 116: 7447 -
7c
Chiara JL.Marco-Contelles J.Khiar N.Gallego P.Destabel C.Bernabe M. J. Org. Chem. 1995, 60: 6010 -
7d
Marco-Contelles J.Gallego P.Rodriguez-Fernandez M.Khiar N.Destabel C.Bernabe M.Martinez-Grau A.Chiara JL. J. Org. Chem. 1997, 62: 7397 -
7e
Storch de Garcia I.Dietrich H.Bobo S.Chiara JL. J. Org. Chem. 1998, 63: 5883 -
7f
Chiara JL. In Carbohydrate Mimics: Concepts and MethodsChapleur Y. Wiley-VCH; Weinheim: 1998. Chap. 7. p.123-156 -
7g
Miyabe H.Kanehira S.Kume K.Kandori H.Naito T. Tetrahedron 1998, 54: 5883 -
7h
Machrouhi F.Namy J.-L. Tetrahedron Lett. 1999, 40: 1315 -
7i
Bobo S.Storch de Gracia I.Chiara JL. Synlett 1999, 1551 -
7j
Taniguchi N.Uemura M. J. Am. Chem. Soc. 2000, 122: 8301 -
7k
Ma Y.Zhang Y.Zhou L. J. Chem. Res., Synop. 2000, 250 -
7l
Masson G.Py S.Vallee Y. Angew. Chem. Int. Ed. 2002, 41: 1772 -
7m
Tanaka Y.Taniguchi N.Uemura M. Org. Lett. 2002, 4: 835 -
7n
Tanaka Y.Taniguchi N.Kimura T.Uemura M. J. Org. Chem. 2002, 67: 9227 -
7o
Kimura T.Shoda R.Taniguchi N.Kamikawa K.Uemura M. Inorg. Chim. Acta 2004, 357: 1829 -
7p
Chiara JL.de Gracia IS.Garcia A.Bastida A.Bobo S.Martin-Ortega MD. ChemBioChem 2005, 6: 186 -
7q
Masson G.Philouze C.Py S. Org. Biomol. Chem. 2005, 3: 2067 -
8a
Naito T.Tajiri K.Harimoto T.Ninomiya I.Kiguchi T. Tetrahedron Lett. 1994, 35: 2205 -
8b
Kiguchi T.Tajiri K.Ninomiya I.Naito T.Hiramatsu H. Tetrahedron Lett. 1995, 36: 253 -
8c
Tormo J.Hays DS.Fu GC. J. Org. Chem. 1998, 63: 201 -
8d
Egger A.Hunziker J.Rihs G.Leumann C. Helv. Chim. Acta 1998, 81: 734 -
8e
Naito T.Nakagawa K.Nakamura T.Kasei A.Ninomiya I.Kiguchi T. J. Org. Chem. 1999, 64: 2003 -
8f
Naito T.Nair JS.Nishiki A.Yamashita K.Kiguchi T. Heterocycles 2000, 53: 2611 -
9a
Storch de Gracia I. PhD Thesis Universidad Autónoma de Madrid; Spain: 2002. -
9b
See also ref. 4b (X = NOMe), 4c and 6h.
-
10a
Lichtenthaler FW.Schneider-Adams T. J. Org. Chem. 1994, 59: 6728 -
10b
Fürstner A.Konetzki I. J. Org. Chem. 1998, 63: 3072 - 16
Fernandez R.Ferrete A.Llera JM.Magriz A.Martin-Zamora E.Diez E.Lassaletta JM. Chem.-Eur. J. 2004, 10: 737 ; and references cited therein
References
Preparation of Compound 5.
To a solution of 4 (1.0 g, 2.22 mmol) in anhyd CH2Cl2 (30 mL) under argon was added carbonyldiimidazole (0.767 g, 4.73 mmol) and Et3N (0.9 ml, 2.8 mmol) and the mixture was stirred at r.t. for 5 h. The reaction was concentrated under reduced pressure, diluted with CH2Cl2 (10 mL) and washed with aq HCl 2% (3 × 10 mL). The organic phase was dried over Na2SO4, filtered and concentrated at reduced pressure. The crude was purified by flash chromatography (silica gel, hexane-EtOAc 5:1) to give 5 (799 mg, 86%) as a white solid. Mp 60-61 °C; [α]D
20 +4.9 (c 4.8, CHCl3). IR (KBr): 3435, 2862, 1813, 1453, 1367,1355, 1156,1050, 746, 696 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.39-7.28 (m, 13 H), 7.26-7.17 (m, 2 H), 6.06 (d, 1 H, J = 6.3 Hz, H-1), 4.70-4.42 (m, 7 H, H-2, 3 OCH2Ph), 3.93 (t, 1 H, J = 4.2 Hz), 3.84-3.81 (m, 2 H), 3.69-3.65 (m, 2 H). 13C NMR (75 MHz, CDCl3): δ = 152.4, 137.5, 137.3, 136.7, 128.5, 128.4, 128.2, 128.0, 127.9, 127.8, 127.8, 97.3, 77.2, 75.8, 73.4, 73.2, 73.1, 72.6, 71.6, 68.3. MS (ES+): m/z = 477.1 [M + H2O]+, 499.1 [M + Na]+. Anal. Calcd for C28H28O7: C, 70.57; H, 5.92. Found: C, 69.97; H, 6.12.
Preparation of Compound 6.
To a solution of 5 (200 mg, 0.42 mmol) in EtOH (2 mL) was added i-Pr2NEt (161 µL, 0.92 mmol) and hydrazine hydrochloride (32 mg, 0.46 mmol) and the mixture was heated at 80 °C for 4 d. The reaction was concentrated at reduced pressure and the crude was purified by flash chromatography (silica gel, hexane-EtOAc 3:1) to give 6 (140 mg, 68%) as a yellowish oil. [α]D
20 -0.9 (c 1.7, CHCl3). IR (KBr): 3306, 292, 1748, 1722, 1454, 1360, 1260, 1212, 1072, 1026, 751, 698 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.91 (br s, 1 H, NH), 7.49-7.27 (m, 13 H), 7.26-7.17 (m, 2 H), 7.02 (d, 1 H, J = 2.4 Hz, H-1), 4.91 (dd, 1 H, J = 1.8, 5.4 Hz, H-2), 4.75 (d, 1 H, J = 11.7 Hz, OCH2Ph), 4.64 (d, 1 H, J = 11.4 Hz, OCH2Ph), 4.54-4.48 (m, 4 H, 2 OCH2Ph), 4.11 (dd, 1 H, J = 4.2, 5.1 Hz), 4.01 (q, 1 H, H-5), 3.80 (dd, 1 H, J = 3.9, 7.5 Hz), 3.71-3.62 (m, 2 H), 2.56 (d, 1 H, J = 6.6 Hz, OH). 13C NMR (75 MHz, CDCl3): δ = 149.0, 140.8, 137.4, 137.2, 137.1, 128.5, 128.4, 128.3, 128.1, 128.0, 127.9, 76.9, 74.8, 74.3, 73.8, 73.5, 70.4, 70.1. MS (ES+): m/z = 491.1 [M + H]+, 508.3 [M + Na]+.
Preparation of Compound 7.
To a solution of 6 (50 mg, 0.101 mmol) in CH2Cl2 (1 mL) under argon was added a suspension of Dess-Martin periodinane (86.5 mg, 0.203 mmol) in CH2Cl2 (0.5 mL). After stirring at r.t. for 1 h, the mixture was diluted with CH2Cl2 (5 mL) and washed with aq sat. NaHCO3 (2 × 3 mL). The organic phase was washed with aq 10% Na2S2O3 (2 × 3 mL), dried over Na2SO4, filtered and concentrated at reduced pressure. The crude was purified by flash chromatography (silica gel, hexane-EtOAc 2:1) to give 7 (25 mg, 51%) as a colorless oil. [α]D
20 -6.6 (c 0.8, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 7.89 (s, 1 H, NH), 7.36-7.20 (m, 15 H), 7.00-7.00 (d, 1 H, J = 2.1 Hz, H-1), 4.86 (dd, 1 H, J = 2.1, 5.4 Hz, H-2), 4.50 (s, 2 H OCH2Ph), 4.57 (d, 1 H, J = 11.4 Hz, H-6), 4.48 (s, 1 H), 4.39 (d, 1 H, J = 11.4 Hz, H-6′), 4.31 (d, 1 H, J = 3.9 Hz), 4.19 (m, 3 H). 13C NMR (75 MHz, CDCl3): δ = 206.8, 148.2, 140.0, 136.9, 136.3, 135.9, 129.0, 129.0, 129.0, 128.9, 128.8, 128.4, 128.4, 80.5, 76.9, 74.7, 74.3, 74.3, 73.5, 73.4.
Reductive Cyclization of Compound 7.
A solution of 7 (90 mg, 0.184 mmol) in THF (5 mL) was added dropwise under argon to a 0.1 M THF solution of SmI2 (0.1 M, 5.5 mL, 0.552 mmol) and t-BuOH (88 µL, 0.92 mmol) at -30 °C. After stirring at -30 °C for 2 h, the flask was opened to air to oxidize excess SmI2 and the crude reaction mixture was filtered through Florisil®, rinsing with CH2Cl2-MeOH 10:1. The filtrate was evaporated at reduced pressure and the residue was purified by flash chromatography (silica gel, hexane-EtOAc 1:2) to give 8 as a 7:1 mixture of isomers (58 mg, 65%). IR (KBr): 3272, 2868, 1709, 1453, 1093, 1061, 924, 737, 697 cm-1. MS (ES+): m/z = 491.1 [M + H]+, 513.3 [M + Na]+.
Compound 8a: 1H NMR (400 MHz, CDCl3): δ = 7.37-7.12 (m, 15 H), 6.92 (s, 1 H, NH), 5.04 (dd, 1 H, J = 3.5, 5.4 Hz, H-2), 4.73 (d, 1 H, J = 12.0 Hz, OCH2Ph), 4.54 (d, 1 H, J = 12.0 Hz, OCH2Ph), 4.55 (d, 2 H, J = 12.0 Hz, OCH2Ph), 4.47 (dd, 1 H, J = 1.5, 12.6 Hz, NH), 4.42 (d, 1 H, J = 11.7 Hz, OCH2Ph), 4.35 (d, 1 H, J = 11.7 Hz, OCH2Ph), 4.19 (d, 1 H, J = 3 Hz, H-3), 3.75 (s, 1 H, H-4), 3.72 (d, 1 H, J = 9.6 Hz, H-6), 3.62 (d, 1 H, J = 9.6 Hz, H-6′), 3.51 (ddd, 1 H, J = 1.5, 5.4, 12.6 Hz, H-1), 3.31 (s, OH). 13C NMR (75 MHz, CDCl3): δ = 153.5 (C=O), 137.3, 137.0, 136.5, 128.4, 128.4, 128.3, 128.1, 128.0 127.9, 127.9, 127.8, 127.7, 88.2 (C-3), 87.9 (C-2), 86.6 (C-4), 80.7 (C-5), 73.7 (OCH2Ph), 72.0 (OCH2Ph), 71.6 (OCH2Ph), 68.3 (C-6), 62.4 (C-1)
Compound 8b (partial spectrum): 1H NMR (400 MHz, CDCl3): δ = 6.81 (s, 1 H, NH), 4.58 (dd, 1 H, J = 3.4, 8.3 Hz, H-2), 4.36 (m, 1 H, H-3), 3.93 (d, 1 H, J = 8.1 Hz), 3.75 (m, 1 H, H-1), 3.40 (d, 1 H, J = 9.2 Hz, H-6), 3.26 (d, 1 H, J = 9.2 Hz, H-6′), 3.10 (s, OH). 13C NMR (75 MHz, CDCl3): δ = 156.0 (C=O), 137.4, 87.2 (C-3), 83.2 (C-2), 80.1 (C-4), 73.4 (OCH2Ph), 73.3 (OCH2Ph), 72.6 (OCH2Ph), 69.4 (C-6), 55.3 (C-1).
For clarity, the numbering of the carbons in the starting glucose derivative 4 has been kept for all the compounds.