Abstract
A new concept for immobilising Grubbs III catalyst by direct coordination of ruthenium to polyvinyl pyridine (PVP) is presented. PVP was prepared by precipitation polymerisation, which led to small bead sizes (0.2-2 µm) and large surface areas. Compared to commercial resins, this phase showed superior properties when employed in model ring-closing metathesis (RCM) and in representative RCM, enyne and CM reactions with various substrates. The concept of immobilisation was also applied to Raschig rings made from a glass polymer composite material, which can be incorporated into devices for continuous flow processes.
Key words
catalysis - immobilisation - olefin metathesis - microwave assistance - Ru-catalyst - polymer support
References
General reviews:
1a
Schrock RR.
Hoveyda AH.
Angew. Chem. Int. Ed.
2003,
42:
4592
1b
Trnka TM.
Grubbs RH.
Acc. Chem. Res.
2001,
34:
18
1c
Fürstner A.
Angew. Chem. Int. Ed.
2000,
39:
3012
1d
Grubbs RH.
Chang S.
Tetrahedron
1998,
54:
4413
1e
Schuster M.
Blechert S.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2037
Ruthenium contamination is an important aspect in envisaged industrial applications of this methodology, see for example:
2a
Nicola T.
Brenner M.
Donsbach K.
Kreye P.
Org. Process Res. Dev.
2005,
9:
513
For approaches where ruthenium impurities are removed by addition of various scavengers, see:
2b
Maynard HD.
Grubbs RH.
Tetrahedron Lett.
2000,
40:
4137
2c
Paquette LA.
Schloss JD.
Efremov I.
Fabris F.
Gallou F.
Mendez-Andino J.
Yang J.
Org. Lett.
2000,
2:
1259
2d
Ahn YM.
Yang K.
Georg GI.
Org. Lett.
2001,
3:
1411
2e For a recent example of use of biphasic extraction of ruthenium remains in preparation of hepatitis C antiviral agent BILN 2061, see: WO 2004/089974 A1 (2004, Boehringer Ingelheim International GmbH).
Reviews on polymer-bound reagents and catalysts:
3a
Solodenko W.
Frenzel T.
Kirschning A. In
Polymeric Materials in Organic Synthesis and Catalysis
Buchmeiser MR.
Wiley-VCH;
Weinheim:
2003.
p.201-240
3b
Kirschning A.
Monenschein H.
Wittenberg R.
Angew. Chem. Int. Ed.
2001,
40:
650
3c
Ley SV.
Baxendale IR.
Bream RN.
Jackson PS.
Leach AG.
Longbottom DA.
Nesi M.
Scott JS.
Storer RI.
Taylor SJ.
J. Chem. Soc., Perkin Trans. 1
2000,
3815
Reviews:
4a
Kingsbury JS.
Hoveyda AH. In
Polymeric Materials in Organic Synthesis and Catalysis
Buchmeiser MR.
Wiley-VCH;
Weinheim:
2003.
p.467
4b
Buchmeiser MR.
New J. Chem.
2004,
28:
549
5a
Kingsbury JS.
Harrity JPA.
Bonitatebus PA.
Hoveyda AH.
J. Am. Chem. Soc.
1999,
121:
791
5b
Garber SB.
Kingsbury JS.
Gray BL.
Hoveyda AH.
J. Am. Chem. Soc.
2000,
122:
8168
6a
Hoveyda AH.
Gillingham DG.
Van Veldhuizen JJ.
Kataoka O.
Garber SB.
Kingsbury JS.
Harrity JPA.
Org. Biomol. Chem.
2004,
2:
1
6b
Kingsbury JS.
Hoveyda AH.
J. Am. Chem. Soc.
2005,
127:
4510
For syntheses of supported variants of 3 , 4 , see inter alia:
7a
Kingsbury JS.
Garber SB.
Giftos JM.
Gray BL.
Okamoto MM.
Farrer RA.
Fourkas JT.
Hoveyda AH.
Angew. Chem. Int. Ed.
2001,
40:
4251
7b
Grela K.
Tryznowski M.
Bieniek M.
Tetrahedron Lett.
2002,
43:
9055
7c
Connon SJ.
Dunne AM.
Blechert S.
Angew. Chem. Int. Ed.
2002,
41:
3835
7d
Dowden J.
Savovic J.
Chem. Commun.
2001,
37
7e
Yao Q.
Angew. Chem. Int. Ed.
2000,
39:
3896
7f
Yao Q.
Zhang Y.
Angew. Chem. Int. Ed.
2003,
42:
3395
7g
Connon SJ.
Blechert S.
Bioorg. Med. Chem. Lett.
2002,
12:
1873
7h
Yao Q.
Zhang Y.
J. Am. Chem. Soc.
2004,
12:
74
7i
Yao Q.
Motta AR.
Tetrahedron Lett.
2004,
45:
2447
7j
Yang L.
Mayr M.
Wurst K.
Buchmeiser MR.
Chem.-Eur. J.
2004,
10:
5761
7k
Krause JO.
Nuyken O.
Wurst K.
Buchmeiser MR.
Chem.-Eur. J.
2004,
10:
777
7l
Krause JO.
Zarka MT.
Anders JU.
Weberskirch R.
Nuyken O.
Buchmeiser MR.
Angew. Chem. Int. Ed.
2003,
42:
5965
7m
Audic N.
Clavier H.
Mauduit M.
Guillemin J.-C.
J. Am. Chem. Soc.
2003,
125:
9248
7n
Clavier H.
Audic N.
Mauduit M.
Chem. Commun.
2004,
282
8 For an excellent review on strategies of non-covalent immobilisation of catalysts refer to: Horn J.
Michalek F.
Tzschucke CC.
Bannwarth W.
Top. Curr. Chem.
2004,
242:
43
9a
Kirschning A.
Jas G.
Top. Curr. Chem.
2004,
242:
209
9b
Jas G.
Kirschning A.
Chem.-Eur. J.
2003,
9:
5708
9c
Fletcher PDI.
Haswell SJ.
Pombo-Villar E.
Warrington BH.
Watts P.
Wong SY.
Zhang X.
Tetrahedron
2002,
58:
4735
9d
Pombo-Villar E.
Warrington BH.
Watts P.
Wong SY.
Zhang X.
Tetrahedron
2002,
58:
4735
10
Kunz U.
Leue S.
Stuhlmann F.
Sourkouni-Argirusi G.
Wen H.
Jas G.
Kirschning A.
Eur. J. Org. Chem.
2004,
3601
11a
Schöning KU.
End N.
Top. Curr. Chem.
2004,
242:
241
11b
Schöning KU.
End N.
Top. Curr. Chem.
2004,
242:
273
12 Part of the work was described by K. Mennecke in his Diploma thesis (Hannover 2004).
13a
Kirschning A.
Altwicker C.
Dräger G.
Harders J.
Hoffmann N.
Hoffmann U.
Schönfeld H.
Solodenko W.
Kunz U.
Angew. Chem. Int. Ed.
2001,
40:
3995
13b
Kunz U.
Schönfeld H.
Solodenko W.
Jas G.
Kirschning A.
Ind. Eng. Chem. Res.
2005,
in press
14 Kunz U, Kirschning A, and Hoffmann U. inventors; EP 1268566 B1.
15
Preparation of Polyvinyl Pyridine Phase by Precipitation Polymerisation.
First, a mixture of 4-vinylpyridine (43.20 g, 410.8 mmol) and divinylbenzene (3.86 g; purity 65% besides ethyl benzene) was prepared. This mixture was filled up with an n -alkane (C14-C17 fraction) to a total volume of 300 mL, AIBN (327 mg, 2 mmol) was added and the temperature was raised to 70 °C. The reaction mixture is kept at this temperature for 24 h. Then the solid material formed was filtered, rinsed with CHCl3 and further purified by extraction in a Soxhlet extractor with CHCl3 and finally dried under reduced pressure to yield PVP (4.85 mmol/g capacity).
16
Love JA.
Morgan JP.
Truka TM.
Grubbs RH.
Angew. Chem. Int. Ed.
2002,
41:
4035
For selected applications of 5 , see inter alia:
17a
Kanemitsu T.
Seeberger PH.
Org. Lett.
2003,
5:
4541
17b
Rai AN.
Basu A.
Org. Lett.
2004,
6:
2861
17c
Aggarwal VK.
Astle CJ.
Rogers-Evans M.
Org. Lett.
2004,
6:
1469
17d
Kulkarni AA.
Diver ST.
Org. Lett.
2003,
5:
3463
17e
Giessert AJ.
Brazis NJ.
Diver ST.
Org. Lett.
2003,
5:
3819
17f
Chen B.
Sleima HF.
Macromolecules
2004,
37:
5866
17g
Rezvani A.
Bazzi HS.
Chen B.
Rakotondradany F.
Sleiman HF.
Inorg. Chem.
2004,
43:
5112
17h
Schuehler DE.
Williams JE.
Sponsler MB.
Macromolecules
2004,
37:
6255
17i
Parrish B.
Emrick T.
Macromolecules
2004,
37:
5863
17j
Hansen EC.
Lee D.
Org. Lett.
2004,
6:
2035
18 Indeed, this idea has been shown to be powerful for the immobilisation of enzymes using nickel NTA-linkers on sepharose for coordinatively trapping enzymes tagged with a His-tag.
19
Preparation of Functionalised Polyvinyl Pyridines 6a and 6b.
A suspension of ruthenium catalyst 5 (140 mg, 0.16 mmol; prepared according to ref. 16) and PVP (6a : 400 mg, 1.84 mmol; 6b : 373 mg, purchased from Acros) in toluene (3 mL) was shaken under argon at r.t. for 72 h. The polymer was filtered and washed with five portions of toluene (2 mL) to yield functionalised polymer 6 (polymer obtained by precipitation polymerisation: 510 mg, 0.15 mmol ruthenium; 96% and polymer from Acros: 477 mg, 0.09 mmol ruthenium; 80%).
20 In comparison, treatment of catalyst 5 with pyridine yielded a new material which from mass spectrometric analysis does not contain bromine but which turned out to be highly unstable and quickly degraded under nitrogen even at -20 °C.
21
General Procedure for Metathesis Reactions with Polymer 6a.
To a suspension of polymer 6a (5 mol%) in dry toluene (0.02 M, 10 mL) under nitrogen was added the substrate (0.25 mmol). The resulting mixture was shaken for 4-7 h at 100 °C. At the end of the reaction (GC monitoring) the polymer was filtered off and washed with several portions of CH2 Cl2 . The solution was concentrated under reduced pressure and in most cases the crude material was sufficiently pure. In order to obtain analytically pure samples the crude material was purified by flash column chromatography (mixture of PE-EtOAc as eluent).
Studies on the Stability of Polymer-Bound Catalysts 6a.
Repeated reactions were carried out according to the general procedure given above by dissolving diallyl malonate 7 (55 µL, 0.228 mmol) in toluene (3 mL). After each reaction the polymer was filtered, washed with five portions of toluene (2 mL), dried under vacuum and reused for the next run. The crude products were isolated quantitatively; the yield of the RCM product 8 was determined after purification by flash column chromatography: 1st run (2 h; 43.5 mg, 0.2 mmol; 89%); 2nd run (2 h; 31.7 mg, 0.14 mmol; 65%); 3rd run (2 h; 30.5 mg, 0.14 mmol; 64%); 4th run (2 h; 13.8 mg, 60 µmol; 29%); 5th run (6 h; 4.8 mg, 22 µmol; 10%).
22 Recently, Grubbs and coworkers were able to isolate a ruthenium-hydrido complex, formed as a thermal degradation product of catalyst 2 which could be made responsible for double-bond migration: Hong SH.
Day MW.
Grubbs RH.
J. Am. Chem. Soc.
2004,
126:
7414
23 Review: Uma R.
Crevisy C.
Gree R.
Chem. Rev.
2003,
103:
27
24a
Chen G.-w.
Kirschning A.
Chem.-Eur. J.
2002,
8:
2717
24b
Arisawa M.
Terada Y.
Nakagawa M.
Nishida A.
Angew. Chem.
2002,
114:
4926
24c
Gurjar MK.
Yakambram P.
Tetrahedron Lett.
2001,
42:
3633
24d
Braddock DC.
Wildsmith AJ.
Tetrahedron Lett.
2001,
42:
3239
24e
Hoye TR.
Zhao H.
Org. Lett.
1999,
1:
1123
25a
Sutton E.
Seigal BA.
Finnegan DF.
Snapper ML.
J. Am. Chem. Soc.
2002,
124:
13390
25b
Schmidt B.
Chem. Commun.
2004,
742
26a
Ahmed M.
Arnauld T.
Barrett AGM.
Braddock DC.
Procopiou PA.
Synlett
2000,
1007
26b Reaction was carried according to the general procedure given for the metathesis reactions with polymer 6a . Additionally, 1-octene (5 mol%) was added to the reaction mixture to yield 2,5-dihydro-1-tosyl-1H -pyrole(15 ) in 35% instead of 96% without 1-octene.