Abstract
The lithium enolates, generated from cyclohexanone, cyclopentanone, and 1-tetralone, react with allyl acetate 1b or carbonate 1c enantioselectively, when catalyzed by (R)- or (S)-BINAP-derived palladium complexes. The presence of lithium chloride is crucial to stereoselectivity. Diastereoselective and enantioselective allylation occurs between cyclohexanone and carbonate 1d. It is shown in the case of the acyclic substrates (Z)-12 and (E)-17 that π-allyl palladium complexes are attacked by lithium enolates from the face opposite to the noble metal.
Key words
asymmetric synthesis - stereoselectivity - ketones - nucleophilic additions - allyl complexes
References
1a
Trost BM.
Tetrahedron
1977,
33:
2615
1b
Tsuji J.
Organic Synthesis with Palladium Compounds
Springer;
New York:
1980.
1c
Trost BM.
Acc. Chem. Res.
1980,
13:
385
1d
Trost BM.
Pure Appl. Chem.
1981,
53:
2357
1e
Tsuji J.
Pure Appl. Chem.
1982,
54:
197
1f
Godleski A. In Comprehensive Organic Synthesis
Vol. 4:
Trost BM.
Pergamon;
Oxford:
1991.
p.585
For reviews, see:
2a
Reiser O.
Angew. Chem., Int. Ed. Engl.
1993,
32:
547 ; Angew. Chem. 1993, 105, 576
2b
Williams JMJ.
Synlett
1996,
705
2c
Trost BM.
Van Vranken DL.
Chem. Rev.
1996,
96:
395
2d
Helmchen G.
J. Organomet. Chem.
1999,
576:
203
2e
Helmchen G.
Pfaltz A.
Acc. Chem. Res.
2000,
33:
336
2f
Trost BM.
Crawley ML.
Chem. Rev.
2003,
103:
2921
2g
Trost BM.
J. Org. Chem.
2004,
69:
5813
3
Heathcock CH. In
Modern Synthetic Methods 1992
Scheffold R.
VHCA, VCH;
Basel, Weinheim:
1992.
p.1 ; and references therein
4a
Fiaud J.-C.
Malleron J.-L.
J. Chem. Soc., Chem. Commun.
1981,
1159
4b
Åkermark B.
Jutand A.
J. Organomet. Chem.
1981,
217:
C41
4c
Negishi E.
Matsushita H.
Chatterjee S.
John RA.
J. Org. Chem.
1982,
47:
3188
4d
Trost BM.
Keinan E.
Tetrahedron Lett.
1980,
21:
2591
4e
Trost BM.
Self CR.
J. Org. Chem.
1984,
49:
468
5a Review: Kazmaier U.
Curr. Org. Chem.
2003,
7:
317
5b
Trost BM.
Schroeder GM.
J. Am. Chem. Soc.
1999,
121:
6759
5c
Braun M.
Laicher F.
Meier T.
Angew. Chem. Int. Ed.
2000,
39:
3494 ; Angew. Chem. 2000, 112, 3637
5d
You S.-L.
Hou X.-L.
Dai L.-X.
Zhu X.-Z.
Org. Lett.
2001,
3:
149
6a
Kazmaier U.
Zumpe FL.
Angew. Chem. Int. Ed.
1999,
38:
1468 ; Angew. Chem. 1999, 111, 1572
6b
Weiß TD.
Helmchen G.
Kazmaier U.
Chem. Commun.
2002,
1270
7a
Bartels B.
García-Yebra C.
Helmchen G.
Eur. J. Org. Chem.
2003,
1097
7b
Peña D.
Minnaard AJ.
de Vries AHM.
de Vries JG.
Feringa BL.
Org. Lett.
2003,
5:
475
8
Takaya H.
Akutagawa S.
Noyori R.
Org. Synth.
1988,
67:
20
9
Takaya H.
Mashima K.
Koyano K.
J. Org. Chem.
1986,
51:
629
10
Seebach D.
Angew. Chem., Int. Ed. Engl.
1988,
27:
1624 ; Angew. Chem. 1988, 100, 1685
11
Lloyd-Jones GC.
Stephen SC.
Fairlamb IJS.
Martorell A.
Dominguez B.
Tomlin PM.
Murray M.
Fernandez JM.
Jeffery JC.
Riis-Johannessen T.
Guerziz T.
Pure Appl. Chem.
2004,
76:
589
12
Enders D. In
Asymmetric Synthesis
Part B, Vol. 2:
Morrison JD.
Academic Press;
New York:
1984.
Chap. 4.
13
Imai M.
Hagihara A.
Kawasaki H.
Manabe K.
Koga K.
Tetrahedron
2000,
56:
179
14a
Burger EC.
Tunge JA.
Org. Lett.
2004,
6:
4113
14b
Behenna DC.
Stoltz BM.
J. Am. Chem. Soc.
2004,
126:
15044
14c
Trost BM.
Xu J.
J. Am. Chem. Soc.
2005,
127:
2846
15 The opposite diastereomer was predominantly obtained in the rearrangement of allyl β-ketoesters: cf. ref. 14a. The product 10 was isolated in 35% yield aside from recovered carbonate 1d (40%). The fact that the latter is non-racemic indicates an at least partial kinetic resolution.
16a
Enders D.
Eichenauer H.
Angew. Chem., Int. Ed. Engl.
1976,
15:
549 ; Angew. Chem. 1976, 88, 579
16b
Meyers AI.
Williams DR.
Erickson GW.
White S.
Druelinger M.
J. Am. Chem. Soc.
1981,
103:
3081
16c
Hiroi K.
Abe J.
Suya K.
Sato S.
Koyama T.
J. Org. Chem.
1994,
59:
203
17
Yanagisawa A.
Kikuchi T.
Kuribayashi T.
Yamamoto H.
Tetrahedron
1998,
54:
10253
18
Bordwell FG.
Acc. Chem. Res.
1988,
21:
456
19
Braun M.
Unger C.
Opdenbusch K.
Eur. J. Org. Chem.
1998,
2389
20
Hayashi T.
Yamamoto A.
Hagihara T.
J. Org. Chem.
1986,
51:
723
21
Lassaletta J.-M.
Fernández R.
Martín-Zamora E.
Díez E.
J. Am. Chem. Soc.
1996,
118:
7002
22
Procedure for the Synthesis of (
R
)-4a.
A 100-mL two-necked flask is equipped with a magnetic stirrer and charged with [Pd2(dba)3]·CHCl3 (25.9 mg; 25 µmol), (R)-8 (63.0 mg, 101 µmol), and LiCl (0.49 g, 12 mmol). The flask is closed with a septum, connected to a combined N2/vacuum line, evacuated for 4 h at 25 °C and filled with N2. A solution of 1c (0.562 g, 4.84 mmol) in anhyd THF (13 mL) is added by syringe. The deep purple mixture is stirred at 25 °C until the color changes to yellow (approximately 1 min). A 500-mL two-necked flask is equipped with a magnetic stirrer, a resistance thermometer, a connection to the combined N2/vacuum line and a septum. The air in the flask is replaced by N2, and diisopropylamine (17.0 mL, 120.3 mmol) and THF (80 mL) are injected. After cooling to -78 °C, a 1.6 M solution of n-BuLi in hexane (75 mL, 120.0 mmol) is added, whereby the temperature is kept below -70 °C. After stirring at 0 °C for 30 min, it is cooled again to -78 °C and treated with distilled, degassed cyclohexanone (12.5 mL, 120.5 mmol) in 70 mL of THF. After stirring at 0 °C for 30 min, the solution is stored at - 78 °C. At -78 °C, 11 mL (5.09 mmol) of the enolate solution are added to the 100-mL flask by syringe. After stirring at -78 °C for 40 h, the mixture is poured into 100 mL of phosphate buffer (pH = 7) and extracted four times with CH2Cl2 (50 mL each). The combined organic layers are dried with MgSO4 and evaporated at 40 °C at a pressure that does not fall below 200 mbar. The flask is connected by glass tubes with two subsequent traps that are cooled to 0 °C and -196 °C, respectively. When the flask containing the crude product is heated to 50 °C at 0.07 mbar, pure product is collected in the 0 °C trap. Yield of (R)-4a: 0.422 g (63%); t
R = 24.8 min for (R)-4a; t
R = 26.6 min for (S)-4a; 90% ee.