References and Notes
1a
Horner L.
Hoffman H.
Wippel HG.
Klahre G.
Chem. Ber.
1959,
92:
2499
1b
Wadsworth WS.
Emmons WD.
J. Am. Chem. Soc.
1961,
83:
1733
For a book and reviews:
2a
Wadsworth DH.
Org. React.
1977,
25:
73
2b
Boutagy J.
Thomas R.
Chem. Rev.
1974,
74:
87
2c
Maryanoff BE.
Reitz AB.
Chem. Rev.
1989,
89:
863
2d
Nicolaou KC.
Harter MW.
Gunzner JL.
Nadin A.
Liebigs Ann./Recl.
1997,
1283
2e
Motoyoshiya J.
Trends Org. Chem.
1998,
7:
63
2f
Thirsk C.
Whiting A.
J. Chem. Soc., Perkin Trans. 1
2002,
999
3
Still WC.
Gennari C.
Tetrahedron Lett.
1983,
24:
4405
4a
Ando K.
Tetrahedron Lett.
1995,
36:
4105
4b
Ando K.
J. Org. Chem.
1997,
62:
1934
4c
Ando K.
J. Org. Chem.
1998,
63:
8411
4d
Ando K.
J. Org. Chem.
1999,
64:
6815
4e
Ando K.
Oishi T.
Hirama M.
Ohno H.
Ibuta T.
J. Org. Chem.
2000,
65:
4745
4f
Ando K.
Synlett
2001,
1272
5a
Sano S.
Yokoyama K.
Fukushima M.
Yagi T.
Nagao Y.
Chem. Commun.
1997,
559
5b
Sano S.
Teranishi R.
Nagao Y.
Tetrahedron Lett.
2002,
43:
9183
5c
Sano S.
Saito K.
Nagao Y.
Tetrahedron Lett.
2003,
44:
3987
6a
Mukaiyama T.
Banno K.
Narasaka K.
Chem. Lett.
1973,
1011
6b
Mukaiyama T.
Banno K.
Narasaka K.
J. Am. Chem. Soc.
1974,
96:
7503
6c
Mukaiyama T.
Organic Reactions
Vol. 28:
Wiley;
New York:
1982.
p.203
7a
Evans DA.
Clark JS.
Metternich R.
Novack VJ.
Sheppard GS.
J. Am. Chem. Soc.
1990,
112:
866
7b
Evans DA.
Urpi F.
Somers TC.
Clark JS.
Bilodeau MT.
J. Am. Chem. Soc.
1990,
113:
8215
7c
Evans DA.
Rieger DL.
Bilodeau MT.
Urpi F.
J. Am. Chem. Soc.
1991,
112:
1047
7d
Crimmins MT.
King BW.
Tabet EA.
Chaudhary K.
J. Org. Chem.
2001,
66:
894
8a
Tanabe Y.
Bull. Chem. Soc. Jpn.
1988,
62:
1917
8b
Misaki T.
Nagase R.
Matsumoto K.
Tanabe Y.
J. Am. Chem. Soc.
2005,
127:
2854 ; and other references cited therein
9a
Tanabe Y.
Matsumoto N.
Higashi T.
Misaki T.
Itoh T.
Nishii Y.
Tetrahedron
2002,
58:
8269
9b
Tanabe Y.
Matsumoto N.
Funakoshi S.
Manta N.
Synlett
2001,
1959
9c
Tanabe Y.
Mitarai K.
Higashi T.
Misaki T.
Nishii Y.
Chem. Commun.
2002,
2542
10
Typical Procedure (Table 2, Entry 1).
TiCl4 (neat, 132 µL, 1.20 mmol) and Et3N (142 mg, 1.40 mmol) in CH2Cl2 (0.5 mL) were successively added to a stirred solution of (EtO)2P(O)CH2CO2Et (1; 224 mg, 1.00 mmol) in CH2Cl2 (3.5 mL) at -20 °C under an Ar atmosphere. After 15 min, i-PrCHO (110 µL, 1.20 mmol) was added and the reaction mixture was stirred for 2 h. Then, H2O was added to the mixture, which was extracted twice with Et2O. The combined organic phase was washed with H2O, brine, dried (Na2SO4) and concentrated to give the desired product 2a (281 mg, 95%). 1H NMR (300 MHz, CDCl3): δ = 0.91 (syn, 3 H, d, J = 6.5 Hz), 0.93 (anti, 3 H, d, J = 6.9 Hz), 1.02 (anti, 3 H, d, J = 6.9 Hz), 1.08 (syn, 3 H, d, J = 6.5 Hz), 1.27-1.38 (9 H, m), 1.72-1.88 (1 H, m), 3.20 (syn, 1 H, dd, J = 9.3, 20.6 Hz), 3.27 (anti, 1 H, dd, J = 3.8, 23.4 Hz), 3.80-3.87 (1 H, m), 4.08-4.30 (6 H, m). 13C NMR (75 MHz, CDCl3): δ = 13.99, 16.27, 17.99, 19.39, 32.71, 32.85, 48.45 [d, 1J (13C, 31P) = 132.9 Hz], 62.50 [d, 2J (13C, 31P) = 7.2 Hz], 63.18 [d, 2J (13C, 31P) = 7.2 Hz], 74.75 [d, 2J (13C, 31P) = 4.3 Hz], 163.68 [d, 2J (13C, 31P) = 4.3 Hz].
11 Among several attempts of O-acetylation procedures, use of Ac2O (2.0 equiv)-cat. Ph2N+H2·OTf- (0.1 equiv) in toluene at r.t. resulted in nearly quantitative conversion yields.
Ethyl 3-acetoxy-2-(diethylphosphono)-2,4-dimethyl-pentanoate (from 2b): 1H NMR (300 MHz, CDCl3): δ = 0.88 (3 H, d, J = 6.9 Hz), 1.04 (3 H, d, J = 6.9 Hz), 1.22-1.39 (9 H, m), 2.02 (anti, 3 H, s), 2.22 (syn, 3 H, s), 4.07-4.27 (6 H, m), 5.51 (anti, 1 H, dd, J = 2.8, 6.5 Hz), 5.69 (syn, 1 H, dd, J = 1.4, 9.63 Hz).
12
Misaki T.
Kurihara M.
Tanabe Y.
Chem. Commun.
2001,
2478
13
General Procedure.
BSA (367 µL, 1.50 mmol) was added to a stirred solution of 2 and PyH+·OTf - (46 mg, 0.2 mmol) in THF (2.0 mL) at 20-25 °C under an Ar atmosphere. After 0.5 h, H2O was added to the mixture, which was extracted twice with Et2O. The combined organic phase was washed with H2O, brine, dried (Na2SO4) and concentrated. The obtained crude oil was purified by SiO2 column chromatography (hexane-EtOAc, 1:1) to give the desired product.
Ethyl 2-(diethylphosphono)-4-methyl-3-(trimethyl-siloxy)pentanoate (3a): 1H NMR (300 MHz, CDCl3): δ = 0.09 (anti, 9 H, s), 0.18 (syn, 9 H, s), 0.85 (syn, 3 H, d, J = 6.5 Hz), 0.86 (anti, 3 H, d, J = 6.9 Hz), 0.95 (syn, 3 H, d, J = 6.4 Hz), 0.96 (anti, 3 H, d, J = 6.9 Hz), 1.28-1.36 (9 H, m), 2.03-2.13 (1 H, m), 3.26 (syn, 1 H, dd, J = 9.3, 19.9 Hz) 3.29 (anti, 1 H, dd, J = 10.0, 19.6 Hz), 3.99-4.33 (7 H, m).
13C NMR (75 MHz, CDCl3): δ = 0.38, 13.96, 14.15, 16.18, 16.27, 21.01, 30.86, 52.26 [d, 1J (13C, 31P) = 127.2 Hz], 61.19, 62.51 [d, 2J (13C, 31P) = 5.8 Hz], 62.58 [d, 2J (13C, 31P) = 5.8 Hz], 75.95 [d, 2J (13C, 31P) = 2.9 Hz], 168.62 [d, 2J (13C, 31P) = 7.2 Hz]. IR (neat): 3405, 2976, 1252, 1024, 968, 843 cm-1.
Seyden-Penne’s group extensively studied HWE reaction using RMgCl as a base to produce the aldol adduct. However, there are no experimental details and some trials in our hands failed to obtain the desired products.
14a
Lefébvre G.
Seyden-Penne J.
J. Chem. Soc., Chem. Commun.
1970,
1308
14b
Bottin-Strzalko T.
Seyden-Penne J.
Tetrahedron Lett.
1972,
1945
14c
Kyriakakou G.
Roux-Schmitt MC.
Seyden-Penne J.
Tetrahedron
1975,
31:
1883
15 Acetonide derivative of 2a was prepared as follows: benzyl ester analogue 1′ was used for the present Ti-addition, and the successive debenzylation (H2-cat. Pd/C) and acetonide formation (2,2-dimethoxy propane-cat. PPTS, Scheme
[3]
). 1H NMR (300 MHz, CDCl3): δ = 0.90 (3 H, d, J = 6.9 Hz), 1.04 (3 H, d, J = 6.9 Hz), 1.31-1.39 (6 H, m), 1.55 (3 H, s), 1.71 (3 H, s), 1.95-2.11 (1 H, m), 3.13 (1 H, dd, J = 8.9, 27.9 Hz), 4.12-4.36 (5 H, m). 13C NMR (75 MHz, CDCl3): δ = 13.94, 16.19, 19.66, 23.98, 28.97, 31.34, 43.09 [d, 1J (13C, 31P) = 131.5 Hz], 62.82 [d, 2J (13C, 31P) = 7.2 Hz], 63.89 [d, 2J (13C, 31P) = 7.2 Hz], 72.11, 106.03, 163.68 [d, 2J (13C, 31P) = 5.8 Hz].
16
Typical Procedure (Table 4, Entry 2).
TBS-BEZA (467mg, 1.50 mmol) was added to a stirred solution of the obtained aldol adduct (2c) and -PyH+·OTf- (23 mg, 0.1 mmol) in THF (2.0 mL) at 20-25 °C under an Ar atmosphere. After 0.5 h, H2O was added to the mixture, which was extracted twice with Et2O. The combined organic phase was washed with H2O, brine, dried (Na2SO4) and concentrated. The obtained crude oil was purified by SiO2 column chromatography (hexane-EtOAc = 20:1) to give the desired product (146 mg, 86%).
17 The reaction of Table
[4]
, entry 1 resulted in the formation of TBSOP(O)(OEt)2 (10) in 93% yield based on 1H NMR measurement, which matched with the authentic sample prepared from HOP(O)(OEt)2 and TBSCl in the presence of imidazole in MeCN. 1H NMR (300 MHz, CDCl3): δ = 0.27 (6 H, s), 0.95 (9 H, s), 1.30-1.35 (6 H, m), 4.05-4.13 (4 H, m).