References and Notes
1a
Motl O.
Sedmera P.
Amin AM.
Phytochemistry
1972,
11:
407
1b
Wilson SR.
Prodan KA.
Tetrahedron Lett.
1976,
17:
4231
For example:
2a Lactobacillic acid: Coxon GD.
Al Dulayymi JR.
Baird MS.
Knobl S.
Roberts E.
Minnikin DE.
Tetrahedron: Asymmetry
2003,
14:
1211
2b Methyl dihydrosterculate: Stuart LJ.
Buist PH.
Tetrahedron: Asymmetry
2004,
15:
401
3
Roberts IO.
Baird MS.
Liu Y.
Tetrahedron Lett.
2004,
45:
8685
4
Cheeseman M.
Feuillet FJP.
Johnson AL.
Bull SD.
Chem. Commun.
2005,
2372
5
Green R.
Cheeseman M.
Duffill S.
Merritt A.
Bull SD.
Tetrahedron Lett.
2005,
46:
7931
Also see:
6a
Dixon DJ.
Scott MS.
Luckhurst CA.
Synlett
2005,
2420
6b
Scott MS.
Luckhurst CA.
Dixon DJ.
Org. Lett.
2005,
7:
5813
7a
Jones PF.
Lappert MF.
J. Chem. Soc., Chem. Commun.
1972,
526
7b
Corey EJ.
Markl G.
Tetrahedron Lett.
1967,
8:
3201
8 For a previous example where this methodology has been used for the oxidative C-1 homolgation of aldehydes to their corresponding acids see: Kametani T.
Tsubuki M.
Tatsuzaki Y.
Honda T.
J. Chem. Soc., Perkin Trans. 1
1990,
639
For a discussion of the potential benefits of using 5,5-dimethyl-oxazolidin-2-ones (SuperQuats) for asymmetric synthesis see:
9a
Bull SD.
Davies SG.
Jones S.
Sanganee HJ.
J. Chem. Soc., Perkin Trans. 1
1999,
387
9b
Bull SD.
Davies SG.
Nicholson RL.
Sanganee HJ.
Smith AD.
Tetrahedron: Asymmetry
2000,
387
9c
Bull SD.
Davies SG.
Key MS.
Savory ED.
Chem. Commun.
2000,
1721
10
Bull SD.
Davies SG.
Jones S.
Polywka MEC.
Prasad RC.
Sanganee HJ.
Synlett
1998,
519
These conditions have been used previously for the preparation of racemic and chiral syn-aldols derived from N-acyl-oxazolidin-2-ones, see:
11a Ref. 4.
11b
Feuillet FJP.
Robinson DEJE.
Bull SD.
Chem. Commun.
2003,
2184
11c
Feuillet FJP.
Cheeseman M.
Mahon MF.
Bull SD.
Org. Biomol. Chem.
2005,
2976
11d
Feuillet FJP.
Niyadurupola DG.
Green R.
Cheeseman M.
Bull SD.
Synlett
2005,
1090
12
anti-α-Alkyl-β-hydroxy-N-acyl-oxazolidin-2-ones normally exhibit J
(
2
′
,3
′
) coupling constants of ³7.0 Hz see: Evans DA.
Tedrow JS.
Shaw JT.
Downey CW.
J. Am. Chem. Soc.
2002,
124:
392
13
Charette AB.
Lebel H.
J. Org. Chem.
1995,
60:
2966
14 For a discussion on the mechanism of directed cyclopropanation reactions of allylic alcohols, see: Nakamura M.
Hirai A.
Nakamura E.
J. Am. Chem. Soc.
2003,
125:
2341
15 All new compounds were fully characterised. Selected data for new compounds:
(
R
)-4-Benzyl-3-[(
E
)-(2
R
,3
S
)-3-hydroxy-2-isopropyl-undec-4-enoyl]-5,5-dimethyl-1,3-oxazolidin-2-one (
12): [α]D
25 +22.0 (c 0.85, CH2Cl2). 1H NMR (300 MHz, CDCl3): δ = 7.27-7.11 (5 H, m, Ph), 5.54-5.71 (2 H, m, CH=CHCH2 and CH=CHCH2), 4.53 (1 H, dd, J = 10.0, 4.0 Hz, CHN), 4.36 (1 H, app. t, J = 6.5 Hz, CHOH), 4.09 (1 H, dd, J = 9.0, 6.5 Hz, COCH), 3.09 (1 H, dd, J = 14.5, 4.0 Hz, CH
AHBPh), 2.81 (1 H, dd, J = 14.5, 10.0 Hz, CHA
H
BPh), 2.04-1.88 [4 H, obs. m, OH, CH=CHCH
2 and CH(CH3)2], 1.35-1.12 [8 H, m, (CH
2)4], 1.24 [6 H, app. s, (CH
3)2C], 0.90 [3 H, d, J = 7.0 Hz, CH(CH
3)CH3], 0.82 [3 H, obs. d, J = 7.0 Hz, CH(CH3)CH
3], 0.80 (3 H, obs. t, J = 7.0 Hz, CH2CH
3). 13C NMR (75 MHz, CDCl3): δ = 174.7, 153.9, 137.4, 135.8, 129.5, 129.1, 128.9, 127.2, 82.4, 73.8, 64.3, 54.1, 35.9, 32.7, 32.1, 29.5, 29.3, 28.7, 28.6, 23.0, 22.6, 21.0, 20.4, 14.5. IR (film): 3501 (br OH), 1778 (C=Oox), 1693 (C=O) cm-1. HRMS (ES): m/z calcd [M + NH4]+: 447.3217; found: 447.3213.
(
R
)-4-Benzyl-3-{(
R
)-2-[(
S
)-[(1
R
,2
R
)-2-hexylcyclo-propyl](hydroxy)methyl]-3-methylbutanoyl}-5,5-dimethyl-1,3-oxazolidin-2-one (
13): [α]D
25 -21.0 (c 0.62, MeOH). 1H NMR (300 MHz, CDCl3): δ = 7.34-7.18 (5 H, m, Ph), 4.56 (1 H, dd, J = 10.0, 3.5 Hz, CHN), 4.22 (1 H, dd, J = 8.5, 6.0 Hz, COCH), 3.39 (1 H, dd, J = 8.5, 6.0 Hz, CHOH), 3.23 (1 H, dd, J = 14.5, 3.5 Hz, CH
AHBPh), 2.86 (1 H, dd, J = 14.5, 10.0 Hz, CHACH
BPh), 2.31 [1 H, m, (CH3)2CH], 1.85 (1 H, br s, OH), 1.44-1.20 [10 H m, (CH
2)5], 1.34 [3 H, s, (CH
3)C(CH3)], 1.33 [3 H, s, (CH3)C(CH
3)], 1.02 [3 H, d, J = 7.0 Hz, CH(CH
3)CH3], 1.00 (1 H, obs. m, cyc-CH), 0.93 [3 H, d, J = 7.0 Hz, CH(CH3)CH
3], 0.88 (3 H, t, J = 7.0 Hz, CH2CH
3), 0.76 (1 H, m, cyc-CH), 0.43 (1 H, app. dt, J = 8.5, 4.5 Hz, cyc-CH
AHB), 0.28 (1 H, app. dt, J = 8.5, 5.0 Hz, cyc-CHA
H
B). 13C NMR (75 MHz, CDCl3): δ = 175.1, 153.7, 137.5, 129.4, 129.1, 127.2, 82.2, 75.5, 64.4, 54.5, 35.8, 34.2, 32.3, 29.6, 29.5, 28.8, 28.6, 23.1, 22.8, 22.2, 21.4, 21.1, 18.8, 14.5, 9.6. IR (film): 3516 (br OH), 1778 (C=Oox), 1693 (C=O) cm-1. HRMS (ES): m/z calcd [M + NH4]+: 461.3374; found: 461.3370.
(
R
,
R
)-2-Hexylcyclopropanecarbaldehyde (
9): [α]D
25
-26.0 (c 0.35, CH2Cl2). 1H NMR (300 MHz, CDCl3): δ = 8.98 (1 H, d, J = 5.5 Hz, CHO), 1.61 (1 H, m, C1
H), 1.51-1.20 [11 H, m, C2
H and (CH
2)5], 0.96-0.83 (5 H, m, cyc-CH
2 and CH
3). 13C NMR (75 MHz, CDCl3): δ = 201.2, 32.6, 31.7, 30.6, 29.0, 28.9, 22.7, 22.6, 14.9, 14.1. IR (film): 1713 (C=O) cm-1. HRMS (ES): m/z calcd [M + NH4]+: 172.1696; found: 172.1696.
2-{[(
R
,
R
)-2-Hexylcyclopropyl]methylene}-1,3-dithiane (
14): [α]D
25 -20.0 (c 0.30, CH2Cl2). 1H NMR (300 MHz, CDCl3): δ = 5.42 (1 H, d, J = 10.0 Hz, C=CH), 2.91 (4 H, m, 2 × SCH
2), 2.22-2.13 (2 H, m, SCH2CH
2), 1.58 (1 H, m, C=CHCH), 1.41-1.20 [10 H, m, (CH
2)5], 0.88 (3 H, t, J = 7.0 Hz, CH2CH
3), 0.79 (1 H, m, cyc-CH), 0.65-0.56 (2 H, m, cyc-CH
2). 13C NMR (75 MHz, CDCl3): δ = 140.4, 121.6, 34.1, 32.3, 31.3, 30.5, 29.7, 29.5, 26.0, 23.1, 22.2, 20.3, 15.2, 14.5. IR (film):1678 (C=C) cm-
1. HRMS (ES): m/z calcd [M + H]+: 257.1392; found: 257.1393.
2-[(1
S
,2
R
)-2-Hexylcyclopropyl]acetic acid [(3
S
,4
R
)-cascarillic acid] (
2): [α]D
25 -11.0 (c 0.41, CHCl3); lit. 1a: [α]D
25 -10.5 (c 0.553, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 2.26 (2 H, app. d, J = 7.0 Hz, CH
2CO2H), 1.41-1.18 [10 H, m, (CH
2)5], 0.88 (3 H, t, J = 7.0 Hz, CH2CH
3), 0.77 (1 H, m, C1
H), 0.56 (1 H, m, C2
H), 0.33 (2 H, m, cyc-CH
2).
13C NMR (75 MHz, CDCl3): δ = 176.6, 37.5, 32.8, 30.9, 28.3, 28.1, 21.6, 17.7, 13.1, 13.0, 10.6. IR (film): 1711 (C=O) cm-1. HRMS (EI): m/z calcd [M]+: 184.1458; found: 184.1458.